
Skeleton 02.01r06 Manual

Nikolai Yu. Zolotykh

with participation of Aleksey Bader, Sergey Lobanov, Sergey Lyalin

N.I. Lobachevsky State University of Nizhni Novgorod, Russia

January 22, 2018

Abstract

This paper describes Skeleton: implementation of several new vari-
ations of well-known Double Description Method (DDM) for solving the
vertex and facet enumeration problems for convex polyhedra. New en-
hancements [Zol12] makes Skeleton quite competitive in comparison
with other implementations of DDM. The source code of Skeleton 02.01r06

is available at http://www.uic.nnov.ru/~zny/skeleton.

Contents

1 What’s new? 2

2 Introduction 3

3 Theoretical Preliminaries 4
3.1 Polyhedral Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 The main idea of the algorithm . . . . . . . . . . . . . . . . . . . 9

4 How to Build 9

5 How to Use 10

6 Options 13

7 More Examples 17
7.1 Cube With a Cut Vertex . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Implicit equations and redundant inequalities . . . . . . . . . . . 20
7.3 Skeleton “extended” format . . . . . . . . . . . . . . . . . . . . . 21
7.4 Avis–Fukuda format . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5 Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . 27

1

http://www.uic.nnov.ru/~zny/skeleton


1 What’s new?

Skeleton 02.00.00 May 7, 2006
It is new, completely re-written, fast version of Skeleton.

Skeleton 02.00.01 November 1, 2006
Skeleton now runs on Linux platform. Source code is available.

Skeleton 02.00.02 November 7, 2006
Floating point arithmetic is now supported.

Skeleton 02.00.03 May 30, 2007
Time bug fixed.

Skeleton 02.00.04 October 6, 2009
A bug occurring on 64 bit architecture fixed. (Thanks to Sergey Lyalin
and Sergey Lobanov.)

Skeleton 02.01.00 November 16, 2009:

• The possibility to explicitly set a system of linear equations in addition to
a system of linear inequalities. See --skeletonformat option.

• New option --ridges for constructing ridges.

• New option --facetadjacency for constructing lists of adjacent facets.

• New option --verifyine to determine implicit equations and redundant
inequalities in the input system.

• Avis–Fukuda format is now (partially) supported. See --avisfukudaformat
option.

• New option --silence is available.

• New options --inputfromstdin, --noinputfromstdin are now available.

• According GNU style in long option names double hyphen is used instead
of single hyphen, for example, --minindex instead of -minindex.

• -graphinc option is renamed --graphadj (from graph of potential adja-

cency).

• -inc option is renamed --dis (from discrepancies).

• -minedges, -maxedges options are renamed --minpairs and --maxpairs

correspondingly.

• -incext, -noincext, -incine, -noincine options are renamed to --extinc,
--noextinc, --ineinc, --noineinc correspondingly.

2



Skeleton 02.01.01 July 11, 2010
Installation procedure became simpler. Make file (for Linux) and project
file (for MS Visual Studio) are provided now. Arageli is in the Skele-

ton distribution now and you need not install Arageli separately. A
lot of thanks to Aleksey Bader and Sergey Lyalin.

Skeleton 02.01.02 July 15, 2010
An installation bug is fixed. Thanks to Aleksey Bader, Sergey Lyalin
and Sergey Lobanov. Now in this manual instead of term skeleton (not
program Skeleton) I use the term ossature.

Skeleton 02.01.03 October 19, 2010
A bug connected with division by GCD when using skeleton format is
fixed.

Skeleton 02.01.04 June 10, 2012
A bug reported by A.Maximenko and induced by a GCD computation
bug in Arageli is fixed. Now this manual references to [Zol12] which
has appeared recently.

Skeleton 02.01.05 May 14, 2013
New options connecting with formatting columns in output matrices,
i.e. --aligncolumns, --columnsequalwidth, --nocolumnalignment,
are now available. Some mistakes in section 3.3 are corrected.

Skeleton 02.01r06 January 22, 2018
Thanks to John Perry, Francisco Lopez, Monty Hall, and Vassilis Pandis
for bug reports and useful suggestions.

2 Introduction

It is well known that any polyhedron in Rd can be represented by the following
two ways:

(1) as a set of solutions to the system of linear inequalities, or

(2) as the (Minkowski’s) sum of the conic hull of some vectors and the convex
hull of some points in Rd.

The problem to generate representation (2) if representation (1) is available
is called the vertex enumeration problem. The converse one is called the facet

enumeration problem, or convex hull problem.
Analogously, any polyhedral cone in Rd can be represented by the following

two ways:

(1) as a set of solutions to the system of homogeneous linear inequalities, or

(2) as a set of all non-negative linear combinations of some vectors in Rd.

There is a standard way to reduce vertex/facet enumeration problem for
polyhedra to the correspondent problem for polyhedral cones. From theoretical

3



point of view it is convenient to consider both problems just for polyhedral
cones.

The program Skeleton implements several variations of Double Description
Method (DDM) [MRTT53] solving the vertex and facet enumeration problems.
DDM is considered in a few papers and monographs [Bur56, Che64, Che65,
Che68a, VPS84, Che68b, FQ88, Ver92, FP96, SC97, SG03, Zol12].

Skeleton works with the system of linear inequalities whose entries are
integers (arbitrary precision or 4 bytes long ints) or reals (double floating point
numbers).

In our implementation we use ideas described in [VPS84, FP96, SC97] and
some new enhancements [Zol12]. All these makes Skeleton quite competitive
in comparison with other implementations of DDM, in particular, [Ver92, Fuk02,
Gru03]. Early version of Skeleton is described in [Zol97].

Skeleton can be distributed under the terms of GNU GENERAL PUBLIC
LICENSE Version 2. Read file COPYING.

Thanks to Sergey Lobanov you can use Skeleton on-line (without install
it). Visit http://www.arageli.org.

3 Theoretical Preliminaries

3.1 Polyhedral Cones

Polyhedral cone C is the set of all solutions to a system of homogeneous linear
inequalities and equations Ax ≥ 0, Bx = 0:

C =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

, (⋆)

where A ∈ Rm×d, B ∈ Rt×d (m or/and t may be equal to 0 that corresponds to
the case when inequalities or/and equations are absent accordingly). The case
of system of equations and inequalities can be obviously reduced to the case
of system with only inequalities. For this instead of Bx = 0 we can consider
Bx ≥ 0 and −Bx ≥ 0. But it will be more convenient to consider the more
general case.

The maximal subspace contained in the cone C can be described as a set of
all solutions to the system Ax = 0, Bx = 0. The dimension of this subspace is
equal to d − rank(A⊤, B⊤). The cone is called pointed if it contains only zero
subspace, that’s equivalent to rank(A⊤, B⊤) = d.

Let a ∈ Rd, a 6= 0. The hyper-plane
{

x ∈ Rd : ax = 0
}

is called supporting

for the cone C if C ⊆ {x : ax ≥ 0} or C ⊆ {x : ax ≤ 0}. The intersection of
the cone with a supporting hyper-plain is called its face.

Consider the system of vectors u1, . . . , up inRd. The linear hull Lin(u1, . . . , up)
of the system is the set of all linear combinations of these vectors:

Lin(u1, . . . , up) = {λ1u1 + . . .+ λpup : λi ∈ R (i = 1, . . . , p)} .

4

http://www.arageli.org


The non-negative, or conic, hull NonNeg(u1, . . . , up) of the system is the set of
all non-negative linear combinations:

NonNeg(u1, . . . , up) = {λ1u1 + . . .+ λpup : λi ∈ R, λi ≥ 0 (i = 1, . . . , p)} .

Theorem 1 (Minkowski) For any polyhedral cone C in Rd there exist vectors

u1, . . . , up, v1, . . . , vq in Rd such that

C = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq). (⋆⋆)

Obviously, w.l.g. in Minkowski’s theorem we can omit Lin(u1, . . . , up) item
and instead of (⋆⋆) write simply C = NonNeg(v1, . . . , vq).

Using matrix notation we can re-formulate Minkowski’s theorem as follows.
For any matrices A ∈ Rm×d and B ∈ Rt×d there exist matrices V ∈ Rq×d and
U ∈ Rp×d such that
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

= {x = µV + λU : µ ∈ Rq, µ ≥ 0, λ ∈ Rp} .

Vectors u1, . . . , up, v1, . . . , vq (equivalently, matrices U and V ) can be chosen
in such a way that the following properties of minimality hold:

1. p = d − rank(A⊤, B⊤) and Lin(u1, . . . , up) is the maximal subspace L

included in C (so, the system u1, . . . , up is a basis of L); and

2. q is minimal among all possible q such that (⋆⋆) holds (this means also
that the system v1, . . . , vq is irreducible); in this case the system v1, . . . , vq
is called an ossature of the cone C.

The vectors in an ossature are unique up to any positive multiplier and any item
in L. If the cone C is pointed, i.e. rank(A⊤, B⊤) = d and, hence, p = 0, then
v1, . . . , vq (and — up to positive multiplier — only they) are extreme rays of C.
We’ll say that two vectors in an ossature are adjacent if minimal face containing
both does not contain any other vector in the ossature.

The converse theorem to Minkowski’s one is correct and is known as Weyl’s
theorem.

Theorem 2 (Weyl) For any vectors u1, . . . , up, v1, . . . , vq in Rd there exist

matrices A ∈ Rm×d and B ∈ Rt×d such that

Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

.

Obviously, w.l.g. in Weyl’s theorem we can omit linear equations Bx = 0
and simply write Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) =

{

x ∈ Rd : Ax ≥ 0
}

.
Using matrix notation we can re-formulate Weyl’s theorem as follows. For

any matrices U ∈ Rp×d and V ∈ Rq×d there exist matrices A ∈ Rm×d and
B ∈ Rt×d such that

{x = λU + µV : λ ∈ Rp, µ ∈ Rq, µ ≥ 0} =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

.

Matrices A and B can be chosen in such a way that the following properties

of minimality hold:

5



1. t = d− rank {u1, . . . , up, v1, . . . , vq} and {x : Bx = 0} is the minimal sub-
space containing C (this means also that the systemBx = 0 is irreducible);
and

2. m is minimal among all possible m such that (⋆) holds (this means also
that the system Ax ≥ 0 is irreducible).

The rows in such a matrix A are unique up to any positive multiplier and any
item which is linear combinations of rows in B. The rows in A correspond to
faces of maximum dimension. In particular, if the cone C is full-dimensional,
i.e. rank {u1, . . . , up, v1, . . . , vq} = d and, hence, t = 0, then the rows in A

correspond to facets of C.
These theorems suggest two fundamental problems. First one is to obtain a

dual representation (⋆⋆) if a representation (⋆) is known. The second problem
is converse. It turns out that these problems are computationally equivalent as
the following theorem shows. So, we can concentrate on the first problem.

Theorem 3 (Farkas–Minkowski–Weyl) If

C =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

= {x = µV + λU : µ ∈ Rq, µ ≥ 0, λ ∈ Rp}

then

C′ =
{

x ∈ Rd : V x ≥ 0, Ux = 0
}

=
{

x = µA+ λB : µ ∈ Rm, µ ≥ 0, λ ∈ Rt
}

.

Moreover, if rows in V and U form an ossature of C and a basis of mini-
mal subspace correspondingly, then V x ≥ 0, Ux = 0 are irreducible systems
determining C′ and vice versa. Analogous property is true for A and B.

3.2 Polyhedra

Polyhedron P is the set of all solutions to a system of linear inequalities and
equations Ax ≥ b, Bx = c:

P =
{

x ∈ Rd : Ax ≥ b, Bx = c
}

, (∗)

where A ∈ Rm×d, B ∈ Rt×d, b ∈ Rm, c ∈ Rt (m or/and t may be equal to
0 that corresponds to the case when inequalities or/and equations are absent
accordingly). The case of system of equations and inequalities can be obvi-
ously reduced to the case of system with only inequalities. But it will be more
convenient to consider the more general case.

Let a ∈ Rd, a 6= 0, α ∈ R. The hyper-plane
{

x ∈ Rd : ax = α
}

is called
supporting for the polyhedron P if P ∩{x : ax = α} 6= ∅ and P ⊆ {x : ax ≥ α}
or P ⊆ {x : ax ≤ α}. The intersection of the polyhedron with a supporting
hyper-plane is called a face of the polyhedron. The face with dimension 0 (i.e.
a point) is called a vertex of P .

6



Consider the system of vectorsw1, . . . , ws inRd. The convex hull Conv(w1, . . . , ws)
of the system is the set of all convex combinations of these vectors, i.e.:

Conv(w1, . . . , ws) =

{

λ1w1 + . . .+ λsws : λi ∈ R, λi ≥ 0,
s

∑

i=1

λi = 1

}

.

The set of points in Rd which can be represented as a convex hull of some finite
system of points is called polytope.

From Minkowski’s theorem we get the following.

Theorem 4 For any polyhedron P in Rd there exist vectors u1, . . . , up, v1, . . . , vq,

w1, . . . , ws in Rd such that

P = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) + Conv(w1, . . . , ws). (∗∗)

So, any polyhedron is the sum of a cone and a polytope.

Obviously, w.l.g. in the theorem we can omit Lin(u1, . . . , up) item and in-
stead of (∗∗) write simply P = NonNeg(v1, . . . , vq) + Conv(w1, . . . , ws).

Vectors u1, . . . , up, v1, . . . , vq, w1, . . . , ws can be chosen in such a way that
the following properties of minimality hold:

1. u1, . . . , up is a basis of the subspace L associated with the maximal linear
variety in P ; and

2. q and s are minimal among all possible q and s such that (∗∗) holds (this
means also that the systems v1, . . . , vq and w1, . . . , ws are irreducible).

In this case vectors w1, . . . , ws are unique up to any item in L; vectors v1, . . . , vq
are unique up to any positive multiplier and any item in L. If p = 0 then points
w1, . . . , ws (and only they) are vertices of P and vectors v1, . . . , vq (and only
they) are extreme rays of P .

The problem of constructing the representation (∗∗) if representation (∗) is
available is called the vertex enumeration problem. It can be reduced to the
analogous problem for cones as follows.

Consider the cone in Rd+1

C =
{

(x1, . . . , xd, xd+1)
⊤ ∈ Rd+1 : Ax ≥ bxd+1, Bx = cxd+1, xd+1 ≥ 0

}

,

where x = (x1, . . . , xd)
⊤. For the cone C we can get a dual representation

C = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq)

for some vectors u1, . . . , up, v1, . . . , vq in Rd+1.
Let ui = (ui, ui,d+1), ui ∈ Rd, ui,d+1 ∈ R (i = 1, . . . , p), vi = (vi, vi,d+1),

vi ∈ Rd, vi,d+1 ∈ R (i = 1, . . . , q). Since the system of homogeneous linear
inequalities and equations contains the inequality xd+1 ≥ 0, then it is clear
that ui,d+1 = 0 (i = 1, . . . , p). Suppose w.l.g. that vi,d+1 = 0 (i = 1, . . . , s),

7



vi,d+1 6= 0 (i = s+1, . . . , q). Now it is not hard to see that the initial polyhedron
P has the following dual representation:

P = Lin(u1, . . . , up)+

+NonNeg(v1, . . . , vs) + Conv

(

1

vs+1,d+1

· vs+1, . . . ,
1

vq,d+1

· vq

)

.

Moreover, if the system u1, . . . , up is a basis of the maximal linear subspace
in C and the system v1, . . . , vq is an ossature of C then the system of vectors
constructed to describe P also has the property of minimality. In particular, if

p = 0 then
1

vs+1,d+1

· vs+1, . . . ,
1

vq,d+1

· vq are vertices of P .

From Weyl’s theorem we get the following.

Theorem 5 For any vectors u1, . . . , up, v1, . . . , vq, w1, . . . , ws, in Rd there ex-

ist matrices A ∈ Rm×d and B ∈ Rt×d and vectors b ∈ Rm, c ∈ Rt such that

Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) + Conv(w1, . . . , ws) =

=
{

x ∈ Rd : Ax ≥ b, Bx = c
}

.

Matrices A and B can be chosen in such a way that the following properties

of minimality hold:

1. the system Bx = c is irreducible and {x : Bx = c} is the minimal linear
variety containing P ; and

2. m is minimal among all possible m such that (∗) holds (this means also
that the system Ax ≥ 0 is irreducible).

In this case the rows in the matrix (A, b) correspond to faces of maximum
dimension. In particular, if P is full-dimensional, i.e.

rank{u1, . . . , up, v1, . . . , vq, w1 − ws, . . . , ws−1 − ws} = d

and, hence, t = 0, then the rows in (A, b) correspond to facets of P .
The problem of constructing the representation (∗) if representation (∗∗) is

available is called the facet enumeration problem, or the convex hull problem. It
can be reduced to the analogous problem for cones as follows.

In Rd+1 consider the cone

C = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq, w1, . . . , ws),

where ui = (ui, 0) (i = 1, . . . , p), vi = (vi, 0) (i = 1, . . . , q), wi = (wi, 1)
(i = 1, . . . , s) and find its representation

C =
{

(x1, . . . , xd, xd+1)
⊤ ∈ Rd+1 : Ax− bxd+1 ≥ 0, Bx− cxd+1 = 0

}

,

where x = (x1, . . . , xd) ∈ Rd. Now it is not hard to see that the initial polyhe-
dron P has the following representation:

P =
{

x ∈ Rd : Ax ≥ b, Bx = c
}

.

8



Moreover, if A, B, b, c are such that each of the systems Ax − bxd+1 ≥ 0 and
Bx = cxd+1 is irreducible and

{

(x1, . . . , xd, xd+1)
⊤ ∈ Rd+1 : Bx− cxd+1 = 0

}

is the minimal subspace containing C then the system of inequalities and equa-
tions constructed to describe P also has a property of minimality.

3.3 The main idea of the algorithm

Given a matrix A ∈ Rm×d, DDM generates a basis of maximal subspace and
an ossature of the cone C =

{

x ∈ Rd : Ax ≥ 0
}

. Obviously, the case then the
cone is defined by a system of linear inequalities and equations can be reduced
to the case with only inequalities.

In the preliminary step of DDM the rank r of A and a basis of the maximal
subspace containing in C are founded. Also, an ossature of the cone determined
by some irreducible subsystem containing r inequalities is generated. Then,
other inequalities are added one after the other and every time the ossature is
re-constructed. Consider this slightly in detail.

Let K be a cone determined by some subsystem of Ax ≥ 0. Suppose that
an ossature of K is known. Consider what will happen with the ossature then
a new inequality ax ≥ 0 is added.

Each vector in the ossature of K falls to one of the following sets:

1. W0 is the set of all vectors w in the ossature such that aw = 0;

2. W+ is the set of all vectors w in the ossature such that aw > 0;

3. W− is the set of all vectors w in the ossature such that aw < 0.

A ossature of the new cone is formed by all elements in W+ and W0 and vectors
which we obtain as follows. For each pair of vectors w′ ∈ W+ and w′′ ∈ W−

adjacent in K we obtain their non-zero linear combination w in K satisfying to
equality aw = 0. Every such w should be included to the ossature of the new
cone.

Variations of DDM differs one from another by ordering in which inequalities
are choose from the system, the methods used to find adjacent rays, a time when
the adjacency is computed and others [VPS84, FP96, SC97, Zol12]. Checking
the adjacency seems the most time-expensive procedure in DDM and different
techniques to determine what pairs of vectors should be verifying are used [FP96,
Zol12].

4 How to Build

The source code of Skeleton is available at http://uic.nnov.ru/~zny/skeleton.
The package contains a documentation, examples, Arageli library and three
C++ files: skeleton.cpp, ddm.hpp and ddmio.hpp.

Skeleton uses Arageli library [Ara10]. Arageli is included in the distri-
bution and it will be compiled automatically. To use newer version of Arageli

9



(for example downloaded from the site [Ara10]), just replace it in the directory
tools/arageli.

To compile the code in standard Linux environment you need gcc version 4
or above. Type

make

We supposed to be in the root directory of Skeleton distribution, so after that
command, binary skeleton will appear in the root directory of the distribution.

To compile the code in Windows you can use MS Visual Studio 2008 or
later. Please refer to msvs directory and skeleton.sln solution file (just build
entire solution). Note that for this building way, executables will appear in
bin directory and will be named by pattern skeleton{32,64}{d,r,f,t}.exe

corresponding to chosen configuration (32 or 64 bit and Debug, Release, Fast
or Test configuration). The fastest configuration is Fast (skeleton32f.exe or
skeleton64f.exe depending on operating system used), so make sure that Fast
configuration is chosen before building MS Visual Studio solution.

5 How to Use

Given a matrix A ∈ Zm×d, program Skeleton generates a basis of maximal
subspace and an ossature of the cone C =

{

x ∈ Rd : Ax ≥ 0
}

.
To use Skeleton, first of all, one should prepare a file with your data. The

file must contain the size and entries of matrix A. Numbers are separated by
spaces and blank lines. For example, if you want to find an ossature of the cone
C defined as a set of solution to the system































x1 ≥ 0,
− x1 + x3 + x4 ≥ 0,

− x2 + x3 ≥ 0,
x3 + x4 ≥ 0,

x1 + x2 + x4 ≥ 0,
− x1 − x2 − x4 ≥ 0

then the input file (say example.ine) is

6 4

1 0 0 0

-1 0 1 1

0 -1 1 0

0 0 1 1

1 1 0 1

-1 -1 0 -1

To run Skeleton just type in the command prompt:

skeleton filename

10



where filename is the name of the input file. Example:

skeleton example.ine

(The file example.ine and other example files mentioned below is in the folder
examples.)

Skeleton produces two files: “output” file, “log” file and “summary”
file. By default, their names are obtained by adding extension .out, .log,
.sum respectively to input file name. In our example Skeleton produces files
example.ine.out, example.ine.log, and example.ine.sum.

The output file contains sizes and entries of matrix U (vectors of a basis in
row-wise order) and matrix V (vectors of an ossature). Also, the file can contain
other information (it depends on options used; see the list of available options
below). In our example we get the following file example.ine.out:

* Basis:

1 4

0 -1 -1 1

* Extreme rays:

2 4

1 -1 1 0

0 0 1 0

Thus, we get u1 = (0,−1,−1, 1)⊤, v1 = (1,−1, 1, 0)⊤, v2 = (0, 0, 1, 0)⊤ and
C = Lin(u1) + NonNeg(v1, v2).

The log file contains computation history. By default, this information is also
displayed on stdcrt during computation. In our example we get the following
file example.ine.log:

rank = 3

Initial set of inequalities:

1 3 2

----------------------------------------------------------------

Iteration 4 / 6 (Inequality No 4 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 0

The number of rays in the current hyperplane = 1

Total number of rays = 3

The current inequality is redundant and it follows from previous ones

----------------------------------------------------------------

Iteration 5 / 6 (Inequality No 5 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 1

The number of rays in the current hyperplane = 0

11



Total number of rays = 3

All edges (3) being scanned for generating new rays

New 2 rays constructed

Constructing new edges in the current hyperplane...

All 2 rays being scanned

0 new edges constructed

----------------------------------------------------------------

Iteration 6 / 6 (Inequality No 6 in the original system)

Rays classifying...

The number of rays inside the current cone = 0

The number of rays outside the current cone = 2

The number of rays in the current hyperplane = 2

Total number of rays = 4

All edges (3) being scanned for generating new rays

New 0 rays constructed

****************************************************************

Final constructing of all edges in the cone...

All 2 rays being scanned

Final number of edges = 1

The summary file contains computation summary. By default, this informa-
tion are also displayed on stdcrt after computation. In our example we get the
following file example.ine.sum:

----------------------

Computation done

----------------------

Command line: skeleton example.ine

Input file: example.ine

Output file: example.ine.out

Log file: example.ine.log

Summary file: example.ine.sum

ine sizes = 6 x 4

equ sizes = 0 x 4

bas sizes = 1 x 4

ext sizes = 2 x 4

inc sizes = 2 x 6

Order = --minindex

Prefixed = --prefixedorder

Graphadj = --graphadj

12



Arith = --bigint

Plusplus = --plusplus

Total number of rays generated (all iterations) = 5

Total number of edges generated (all iterations) = 4

Computation starts: Fri Aug 29 23:44:08 2014

Computation terminates: Fri Aug 29 23:44:08 2014

Time elapsed = 0.345895 s (0 h 0 m 0.345895 s)

You may set different options affecting the process of computation and the
output of information:

skeleton filename options

where options is a list of options. Each option is an abbreviation usually
beginning with double hyphen. Options are separated by spaces. Example:

skeleton example.ine --lexmin --adjacency

Complete list of all available options is in the next section.

6 Options

The following options are available (the default parameters are in braces):

{--minindex}, --maxindex, --lexmin, --lexmax, --random, --mincutoff,
--maxcutoff, --minpairs, --maxpairs
These options affect the ordering of inequalities to be added at each
iteration of DDM.

--prefixedorder, --noprefixedorder
If options --mincutoff, --maxcutoff, --minpairs, --maxpairs are cho-
sen then only --noprefixedorder is possible. In other cases both options
are available; the default one is --prefixedorder.

{--graphadj}, --nographadj
These affect the way of determining adjacent vectors.

{--plusplus}, --noplusplus
If option --plusplus is chosen then only the pairs of adjacent vectors
that will be necessary on the future iterations are constructed. If option
--noplusplus is chosen then all edges are constructed on each iteration.

{--bigint}, --int, --float
By default, arbitrary precision integer arithmetic is used. Option --int

forces to use ordinary (4 bytes) integer precision arithmetic. Option
--float forces to use double floating point (8 bytes) arithmetic. Option
--rational forces to use rational arithmetic when exact enumerator /
exact denominator pair is used to represent rational number.

13



--zerotol value

The option affects only if option --float is used. This is used to change
a zero tolerance for floating point computation. A real value is considered
as zero if its absolute value is at most the tolerance. The default value
for the zero tolerance is 1e-8.

--edges, {--noedges}
Option --edges forces to find edges, i.e. all pairs of adjacent vectors in
the ossature.

--adjacency, {--noadjacency}
Option --adjacency forces to find the lists of ossature vectors adjacent
to each one.

--ridges, {--noridges}
Option --ridges forces to find ridges, i.e. all pairs of adjacent facets.

--facetadjacency, {--nofacetadjacency}
Option --facetadjacency forces to find the lists of facets adjacent to
each one.

--verifyine, {--noverifyine}
Option --verifyine forces to determine implicit equations and redun-
dant inequalities in the input system.

--inputfile filename

This option defines input file name. skeleton --inputfile filename

is equivalent to skeleton filename.

-o filename --outputfile filename

This option sets the name of output file. By default, this name is obtained
by adding extension .out to input file name. If input was from stdin then
output file is skeleton.out.

--logfile filename

This option sets the name of log file. By default, this name is obtained
by adding extension .log to input file name. If input was from stdin
then log file is skeleton.log.

--summaryfile filename

This option sets the name of summary file. By default, this name is
obtained by adding extension .sum to input file name. If input was from
stdin then log file is skeleton.sum.

--inputfromstdin, {--noinputfromstdin}
--inputfromstdin forces to read input information from stdin instead
of file.

{--simpleformat}, --skeletonformat, --avisfukudaformat
--skeletonformat indicates that input contains both inequalities and
equations (both A and B matrices).
--avisfukudaformat indicates that input is in Avis–Fukuda format (see
[Fuk02]); all options in the file are ignored; only matrix in begin–end

14



parentheses is read; the number type specificator (integer, ration etc.)
is ignored.

{--outputinfile}, --nooutputinfile
If --nooutputinfile is chosen then Skeleton will not put results in
output file.

--outputonstdout, {--nooutputonstdout}
If --outputonstdin is chosen then Skeleton will put results on stdout.

{--loginfile}, --nologinfile
If --nologinfile is chosen then Skeleton will not put log information
in log file.

{--logonstdout}, --nologonstdout
If --nologonstdout is chosen then Skeleton will not put log informa-
tion on stdout.

{--summaryinfile}, --nosummaryinfile
If --nosummaryinfile is chosen then Skeleton will not put summary
information in summary file.

{--summaryonstdout}, --nosummaryonstdout
If --nosummaryonstdout is chosen then Skeleton will not put summary
information on stdout.

--silence

This option is equivalent to --nooutputonstdout, --nologonstdout,
--nosummaryonstdout.

--ine, {--noine}
If --ine is chosen then Skeleton will put the input matrix A (coeffi-
cients of linear inequalities) on stdout or/and in outputfile. This works
only if option --outputinfile or --outputonstdout correspondingly
turns on.

--equ, {--noequ}
If --equ is chosen then Skeleton will put the input matrix B (coef-
ficients of linear equations) on stdout or/and in outputfile. This works
only if option --outputinfile or --outputonstdout correspondingly
turns on.

{--ext}, --noext
If --noext is chosen then Skeleton will not put the matrix V (with
entries of ossature vectors) on stdout and in outputfile. This works only
if option --outputinfile or --outputonstdout correspondingly turns
on.

{--bas}, --nobas
If --nobas is chosen then Skeleton will not put the matrix U (with
entries of basis of maximal subspace contained in the cone) on std-
out and in outputfile. This works only if option --outputinfile or
--outputonstdout correspondingly turns on.

15



--dis, {--nodis}
If --dis is chosen then Skeleton will put the discrepancies matrix V A⊤

on stdout or/and in outputfile. This works only if option --outputinfile
or --outputonstdout correspondingly turns on.

--extinc, {--noextinc}
If --extinc is chosen then for each vector in ossature the program will
print (on stdout or/and in outputfile) inequalities which hold as equal-
ity. This works only if option --outputinfile or --outputonstdout

correspondingly turns on.

--ineinc, {--noineinc}
If --ineinc is chosen then for each inequality in the initial system the
programwill print (on stdout or/and in outputfile) vectors in the ossature
for which the inequality holds as equality. This works only if option
--outputinfile or --outputonstdout correspondingly turns on.

--matrices, --nomatrices
--matrices is equivalent to --ine, --ext, --bas, --inc; --nomatrices
is equivalent to --noine, --noext, --nobas, --noinc. This works only
if option --outputinfile or --outputonstdout turns on.

{--log}, --nolog
If --nolog is chosen no log information will not put on stdout and in log
file. This works only if option --summaryinfile or --summaryonstdout
turns on.

{--summary}, --nosummary
If --nosummary is chosen no summary information (input/output/log
file names, sizes of matrices and option values) will not put on stdout
and in summary file. This works only if option --summaryinfile or
--summaryonstdout turns on.

{--columnsequalwidth}, --aligncolumns, --nocolumnformatting
Option --aligncolumns forces to align columns in output matrices.
Option --columnsequalwidth aligns columns and makes all columns
equally wide. If option --nocolumnalignment is chosen then no column
alignment is applied.

-h or --help
skeleton -h prints the list of available options and terminates the pro-
gram. skeleton --help does the same.

-v or --version
skeleton -v prints Skeleton version and terminates the program.
skeleton --version does the same.

--copying

skeleton --copying prints copyright info.

16



x1

x2

x3

x2 ≥ 0

x3 ≥ 0

x2 ≤ 1

2x1 + 2x2 + 2x3 ≤ 5

x3 ≤ 1

x1 ≤ 1

x1 ≥ 0

1

1

1

Figure 1: Cube with a cut vertex. Facet representation

7 More Examples

7.1 Cube With a Cut Vertex

Consider the polyhedron described by the following system:







































x1 ≥ 0,
x2 ≥ 0,

x3 ≥ 0,
x1 ≤ 1,

x2 ≤ 1,
x3 ≤ 1,

2x1 + 2x2 + 2x3 ≤ 5.

(1)

It is a cube with a “cut” vertex (see Fig. 1).
The corresponding cone is described by the following homogeneous system:















































x1 ≥ 0,
x2 ≥ 0,

x3 ≥ 0,
−x1 + x4 ≥ 0,

− x2 + x4 ≥ 0,
− x3 + x4 ≥ 0,

−2x1 − 2x2 − 2x3 + 5x4 ≥ 0,
x4 ≥ 0

(2)

(setting x4 = 1 we get the initial system). So, input file (named cwcv.ine) is

17



x1

x2

x3

b

b

b

b

b

b

b

b

b

b

v1 v2

v3

v4 v5

v6 v7

v8

v9

v10

Figure 2: Cube with a cut vertex. Vertex representation

8 4

0 1 0 0

0 0 1 0

0 0 0 1

1 -1 0 0

1 0 -1 0

1 0 0 -1

5 -2 -2 -2

1 0 0 0

Running Skeleton with

skeleton cwcv.ine --edges --ineinc

we get the following file cwcv.ine.out:

* Basis:

0 4

* Extreme rays:

10 4

1 1 0 0

1 1 1 0

2 2 2 1

1 1 0 1

2 2 1 2

1 0 0 1

1 0 1 1

2 1 2 2

1 0 1 0

1 0 0 0

18



* Edges:

15

1 2

1 4

1 10

2 3

2 9

3 5

3 8

4 5

4 6

5 8

6 7

6 10

7 8

7 9

9 10

* Inequalities-to-rays incidence:

1: 6 7 9 10

2: 1 4 6 10

3: 1 2 9 10

4: 1 2 3 4 5

5: 2 3 7 8 9

6: 4 5 6 7 8

7: 3 5 8

8:

Matrix with entries of the basis is empty (it contains 0 rows), hence the
polyhedron does not contain any non-zero linear variety. Matrix with entries
of the ossature has 10 rows, hence the polyhedron has 10 vertex (see Fig. 2).
The forth coordinate corresponds to the denominator in entries of all these
vertices. They are v1 = (1, 0, 0)⊤, v2 = (1, 1, 0)⊤, v3 = (1, 1, 1

2
)⊤, v4 = (1, 0, 1)⊤,

v5 = (1, 1

2
, 1)⊤, v6 = (0, 0, 1)⊤, v7 = (0, 1, 1)⊤, v10 =

(

1

2
, 1, 1

)⊤
, v1 = (0, 1, 0)⊤,

v1 = (0, 0, 0)⊤.
Also, we have computed all edges, i.e. pairs of adjacent vertices. The poly-

hedron has 15 edges. They are v1–v2, v1–v4, v1–v10, v2–v3, v2–v9, v3–v5, v3–v8,
v4–v5, v4–v6, v5–v8, v6–v7, v6–v10, v7–v8, v7–v9, v9–v10.

Information concerning “Inequalities-to-rays incidence” tell us that 7 facets
are formed by vertices v6, v7, v9, v10; v1, v4, v6, v10; v1, v2, v9, v10; v1, v2, v3,
v4, v5; v2, v3, v7, v8, v9; v4, v5, v6, v7, v8; v3, v5, v8 correspondingly.

Now we can check our computations by “reversing” them. Form the input
file (named cwcv.ext) containing entries of vertices found:

10 4

1 1 0 0

1 1 1 0

19



2 2 2 1

1 1 0 1

2 2 1 2

1 0 0 1

1 0 1 1

2 1 2 2

1 0 1 0

1 0 0 0

and evoke Skeleton:

skeleton cwcv.ext

We get the following file cwcv.ext.out:

* Basis:

0 4

* Extreme rays:

7 4

0 0 0 1

0 1 0 0

0 0 1 0

1 0 -1 0

1 0 0 -1

5 -2 -2 -2

1 -1 0 0

Since the matrix with “basis” is empty the polyhedron has full dimension. The
matrix with “ossature” has 7 rows. They correspond to exactly the same in-
equalities as in (1), so the polyhedron has 7 facets. We remark that in the list
obtained there is no row corresponding to the inequality x4 ≥ 0 because in our
case it is redundant in (2).

7.2 Implicit equations and redundant inequalities

Skeleton can find implicit equations and redundant inequalities in a system.
Let’s consider the system















































x1 ≥ 0,
x2 ≥ 0,

x3 ≥ 0,
x4 ≥ 0,

x1 + 2x2 + 3x4 ≥ 0,
x1 + x2 + x3 + 3x4 ≥ 0,
x1 − 2x2 + x3 + 3x4 ≥ 0,

−x1 + 2x2 − x3 − 3x4 ≥ 0.

So, the input file (named equ.ine) is

20



8 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 2 0 3

1 1 1 3

1 -2 1 3

-1 2 -1 -3

Running Skeleton with

skeleton equ.ine --verifyine

we get the following file equ.ine.out:

* Basis:

0 4

* Extreme rays:

3 4

2 1 0 0

0 1 2 0

0 3 0 2

* Implicit equations:

2

7 8

* Redundant inequalities:

3

2 5 6

This mean that two inequalities in the original system , the 7th and the 8th,
are implicit equations; the 2nd, 5th and 6th inequalities are redundant.

7.3 Skeleton “extended” format

Skeleton can treat systems containing both inequalities and equations (explic-
itly defined): both A and B matrices. For this it is necessary to use a special
format in the input file. Here is an example:















x1 − x2 − x3 = 0,
x1 ≥ 0,

x2 ≥ 0,
x3 ≥ 0.

The input file (names sf.ine) follows.

* Equations:

1 3

1 -1 -1

21



* Inequalities:

3 3

1 0 0

0 1 0

0 0 1

Running Skeleton with

skeleton sf.ine --skeletonformat

we get the following file sf.ine.out:

* Basis:

0 3

* Extreme rays:

2 3

1 1 0

1 0 1

7.4 Avis–Fukuda format

Skeleton partially supports Avis–Fukuda format (see [Avi, Fuk02]). All op-
tions (except a matrix inside begin–end parentheses) in the file are ignored.
The number type specificator (integer, ration etc.) is also ignored. Note that
the most of options in Avis–Fukuda format has equivalent ones in Skeleton

but they must be indicated in command line.
Let’s consider, for example, the file ucube.ine taken from K.Fukuda cdd

repository [Fuk02]:

* file name: ucube.ine

* 3 cube without one "lid"

H-representation

begin

6 4 integer

2 -1 0 0

2 0 -1 0

-1 1 0 0

-1 0 1 0

-1 0 0 1

4 -1 -1 0

end

incidence

adjacency

input_adjacency

input_incidence

22



Run Skeleton:

skeleton ucube.ine --avisfukudaformat --adjacency --facetadjacency

--extinc --ineinc

The output file is

* Basis:

0 4

* Extreme rays:

5 4

0 0 0 1

1 2 2 1

1 2 1 1

1 1 2 1

1 1 1 1

* Adjacency:

1: 2 3 4 5

2: 1 3 4

3: 1 2 5

4: 1 2 5

5: 1 3 4

* Inequalities-to-rays incidence:

1: 1 2 3

2: 1 2 4

3: 1 4 5

4: 1 3 5

5: 2 3 4 5

6: 1 2

* Rays-to-inequalities incidence:

1: 1 2 3 4 6

2: 1 2 5 6

3: 1 4 5

4: 2 3 5

5: 3 4 5

* Facet adjacency:

1: 2 4 5

2: 1 3 5

3: 2 4 5

4: 1 3 5

5: 1 2 3 4

6:

The log file is

Avis-Fukuda format for input

Option = H-representation

Option = incidence -> ignored

23



Option = adjacency -> ignored

Option = input_adjacency -> ignored

Option = input_incidence -> ignored

rank = 4

Initial set of inequalities:

6 3 4 5

----------------------------------------------------------------

Iteration 5 / 6 (Inequality No 2 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 1

The number of rays in the current hyperplane = 1

Total number of rays = 4

All edges (6) being scanned for generating new rays

New 2 rays constructed

Constructing new edges in the current hyperplane...

All 3 rays being scanned

0 new edges constructed

----------------------------------------------------------------

Iteration 6 / 6 (Inequality No 1 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 1

The number of rays in the current hyperplane = 2

Total number of rays = 5

All edges (5) being scanned for generating new rays

New 1 rays constructed

****************************************************************

Final constructing of all edges in the cone...

All 5 rays being scanned

Final number of edges = 8

7.5 Voronoi Diagram

Let W be a system of s points in Rd. For each w ∈ W we can consider the set

VS(w) =
{

x ∈ Rd : ∀v ∈ W \ {w} dist(x, p) ≤ dist(x, q)
}

,

where dist is the Euclidean distance function. The set VS(w) is called a Voronoi

cell. It is a polyhedron. Its vertices are called Voronoi vertices and extreme rays
are called Voronoi rays. The set {VS(w) : w ∈ W} of all Voronoi cells is called
Voronoi diagram (see Fig. 3). For generating Voronoi diagram the following
construction is widely used.

24



b bb

b

bb

b

w1 w2w3

w4

w5w6

w7

Figure 3: Voronoi diagram for the set of points

For each w ∈ W consider the hyperplane tangent at w = (w1, . . . , wd)
⊤ to

the paraboloid
{

(x1, . . . , xd, xd+1) : xd+1 = x2
1 + . . .+ x2

d

}

. This hyperplane is
represented by the following equation:

−2w1x1 − . . .− 2wdxd + xd+1 + w2
1 + . . .+ w2

d = 0.

Replacing the equality with inequality ≥ and considering these inequalities for
each w ∈ W we get the system of s linear inequalities. Let P be the polyhedron
of all solutions to the system. It turns out that P is a lifting of Voronoi diagram
to one higher dimensional space; and the projection of each facet of P associated
with w is exactly the Voronoi cell VS(w). The vertices and extreme rays of P
project exactly to the Voronoi vertices and rays, respectively [Fuk04].

As an example consider the set of points (0, 0)⊤, (2, 0)⊤, (−2, 0)⊤, (0, 1)⊤,
(1, 2)⊤, (−1, 2)⊤, (0, 3)⊤. For generating their Voronoi diagram consider the
system















































+ x3 ≥ 0,
−4x1 + x3 + 4x4 ≥ 0,
4x1 + x3 + 4x4 ≥ 0,

− 2x2 + x3 + x4 ≥ 0,
−2x1 − 4x2 + x3 + 5x4 ≥ 0,
2x1 − 4x2 + x3 + 5x4 ≥ 0,

− 6x2 + x3 + 9x4 ≥ 0,
x4 ≥ 0.

Prepare file exvoronoi.ine:

8 4

0 0 1 0

-4 0 1 4

4 0 1 4

0 -2 1 1

25



-2 -4 1 5

2 -4 1 5

0 -6 1 9

0 0 0 1

Now evoke Skeleton:

skeleton exvoronoi.ine --ineinc --extinc

We get the following file exvoronoi.ine.out:

* Basis:

0 4

* Extreme rays:

10 4

0 -1 0 0

1 1 6 0

2 1 8 0

-1 1 6 0

-2 1 8 0

-2 1 0 2

2 1 0 2

0 2 3 1

-7 5 4 6

7 5 4 6

* Inequalities-to-rays incidence:

1: 1 6 7

2: 1 3 7 10

3: 1 5 6 9

4: 6 7 8 9 10

5: 2 3 8 10

6: 4 5 8 9

7: 2 4 8

8: 1 2 3 4 5

* Rays-to-inequalities incidence:

1: 1 2 3 8

2: 5 7 8

3: 2 5 8

4: 6 7 8

5: 3 6 8

6: 1 3 4

7: 1 2 4

8: 4 5 6 7

9: 3 4 6

10: 2 4 5

Each extreme ray with last entry equal to 0 corresponds to a Voronoi ray.
Each ray whose last entry is non-zero corresponds to a Voronoi vertex. So, we

26



b bb

b

bb

b

v1 v1

v2

v3

v4

v5

bc bc

bcbc

bc

v6 v7

v8

v9 v10

Figure 4: Voronoi diagram constructed with the help of Skeleton

get 5 Voronoi rays (ignoring the third component):

v1 = (0,−1)⊤, v2 = (1, 1)⊤, v3 = (2, 1)⊤, v4 = (−1, 1)⊤, v5 = (−2, 1)⊤.

and 5 Voronoi vertices (dividing by the forth component and ignoring the third
one):

v6 =

(

−1,
1

2

)⊤

, v7 =

(

1,
1

2

)⊤

, v8 = (0, 2)⊤,

v9 =

(

−
7

6
,
5

6

)⊤

, v10 =

(

7

6
,
5

6

)⊤

.

Interpreting “Edges” or/and “Inequalities-to-rays incidence” we get Fig. 4.

7.6 Delaunay Triangulation

Let W be a system of s points in Rd and v be some Voronoi vertex for W .
The convex hull of the nearest neighbor set of v is called the Delaunay cell of
v. The Delaunay complex (or triangulation) of W is a partition of ConvW into
the Delaunay cells of Voronoi vertices.

The Delaunay complex is not in general a triangulation but becomes a tri-
angulation when the points in W are in general position (or nondegenerate), i.e.
no d + 2 points are cospherical or equivalently there is no point c ∈ Rd whose
nearest neighbor set has more than d+ 1 elements.

The Delaunay complex is dual to the Voronoi diagram in the sense that
there is a natural bijection between the two complexes which reverses the face
inclusions (see Fig. 5) [Fuk04].

So, to generate Delaunay triangulation we can perform the following pro-
cedure. For each vertex of polyhedra (we are not interesting in extreme rays)
in previous section we determine all facets incident to the vertex. Interpreting

27



b bb

b

bb

b

w1

w2w3

w4

w5w6

w7

bc bc

bcbc

bc

Figure 5: Delaunay triangulation is dual to Voronoi diagram

information about “Rays-to-inequalities incidence” in exvoronoi.ine.out we
get that Delaunay cells in this example are formed by the following vertices w1,
w3, w4; w1, w2, w4; w2, w4, w5; w3, w4, w6; w4, w5, w6, w7 (see Fig. 5).

There is a direct way to construct the Delaunay triangulation. Consider the
same paraboloid as in the previous section: xd+1 = x2

1+ . . .+x2
d. For each point

w = (w1, . . . , wd)
⊤ in W consider its lifting (w1, . . . , wd, w

2
1+ . . .+w2

d)
⊤ in Rd+1

and take the convex hull P of all such lifted points. Let v = (0, . . . , 0, 1). It turns
out that any facet of P + NonNeg(v) which is not parallel to v is a Delaunay
cell once its last coordinate is ignored, and any Delaunay cell is represented this
way [Fuk04].

For our example form the file exdelaunay.ext:

8 4

0 0 0 1

2 0 4 1

-2 0 4 1

0 1 1 1

1 2 5 1

-1 2 5 1

0 3 9 1

0 0 1 0

and evoke Skeleton:

skeleton exdelaunay.ext --extinc

We get the file exdelaunay.ext.out:

* Basis:

0 4

* Extreme rays:

28



10 4

0 1 0 0

-1 -1 0 3

-2 -1 0 4

1 -1 0 3

2 -1 0 4

2 -1 1 0

-2 -1 1 0

0 -4 1 3

7 -5 3 2

-7 -5 3 2

* Rays-to-inequalities incidence:

1: 1 2 3 8

2: 5 7 8

3: 2 5 8

4: 6 7 8

5: 3 6 8

6: 1 3 4

7: 1 2 4

8: 4 5 6 7

9: 3 4 6

10: 2 4 5

Only first 5 facets are not parallel to v (because their 3rd coordinate is non-
zero). So, we again have 5 Delaunay cells which are formed by points w1, w3,
w4; w1, w2, w4; w4, w5, w6, w7; w3, w4, w6; w2, w4, w5 correspondingly (see
Fig. 5).

References

[Ara10] Arageli: a library for doing exact computation.
http://www.arageli.org, 2006–2010.

[Avi] D. Avis. lrs homepage. http://cgm.cs.mcgill.ca/~avis/C/lrs.html.

[Bur56] E. Burger. Über homogene lineare ungleichungssysteme. Zeitschrift
für Angewandte Mathematik und Mechanik, 36:135–139, 1956.

[Che64] N.V. Chernikova. Algorithm for finding a general formula for the
non-negative solutions of system of linear equations. U.S.S.R. Com-

putational Mathematics and Mathematical Physics, 4(4):151–158,
1964.

[Che65] N.V. Chernikova. Algorithm for finding a general formula for the
non-negative solutions of system of linear inequalities. U.S.S.R.

Computational Mathematics and Mathematical Physics, 5(2):228–
233, 1965.

29

http://www.arageli.org
http://cgm.cs.mcgill.ca/~avis/C/lrs.html


[Che68a] S.N. Chernikov. Linear inequalities. Nauka, Moscow, 1968. Russian.

[Che68b] N.V. Chernikova. Algorithm for discovering the set of all solutions
of a linear programming problem. U.S.S.R. Computational Mathe-

matics and Mathematical Physics, 8(6):282–293, 1968.

[FP96] K. Fukuda and A. Prodon. Double description method revis-
ited. In M. Deza, R. Euler, and I. Manoussakis, editors, Lecture
Notes in Computer Science, volume 1120, pages 91–111. Springer-
Verlag, 1996. ps file available from ftp.ifor.math.ethz.ch, directory
/pub/fukuda/reports.

[FQ88] F. Fernández and P. Quinton. Extension of Chernikova’s algorithm
for solving general mixed linear programming problems. Technical
report, IRISA, Rennes, France, 1988.

[Fuk02] K. Fukuda. cdd, cddplus and cddlib homepage.
http://www.cs.mcgill.ca/~fukuda/software/cddhome/cdd.html,
2002.

[Fuk04] K. Fukuda. Frequently asked questions in polyhedral computation.
http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html,
2004.

[Gru03] D.V. Gruzdev. Experimental comparison of algorithms for con-
structing convex hulls and triangulations. In O.B. Lupanov, editor,
Proceeding of the XIV International Workshop “Synthesys and Com-

plexity of Control Systems, pages 24–26, Nizhni Novgorod, 2003.
Nizhni Novgorod Pedagogical University. Russian.

[MRTT53] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The
double description method. In H.W. Kuhn and A.W.Tucker, editors,
Contributions to Theory of Games, volume 2, Princeton, RI, 1953.
Princeton University Press.

[SC97] V.N. Shevchenko and A.Yu. Chirkov. On complexity of constructing
the skeleton of the cone. In X Russian conference “Mathematical

programming and applications”, page 237, Ekaterinburgh, 1997. Ural
department of Russian Academy of Science. Russian.

[SG03] V.N. Shevchenko and D.V. Gruzdev. Modification of Fourie–
Motzkin algorithm for constructing triangulations. Discrete Analisys

and Operations Research, Series 2, 10(10):53–64, 2003. Russian.

[Ver92] H.Le. Verge. A note on Chernikova’s algorithm. Technical Report
635, IRISA, Campus de Beaulieu, Rennes, France, 1992.

[VPS84] S.I. Veselov, I.E. Parubochĭı, and V.N. Shevchenko. A program for
finding the skeleton of the cone of nonnegative solutions of a system
of linear inequalities. In Systems and Applied Programs. Part 2,
pages 83–92, Gorky, 1984. Gorky State University. Russian.

30

http://www.cs.mcgill.ca/~fukuda/software/cdd home/cdd.html
http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html


[Zol97] N.Yu. Zolotykh. Program implementation of Motzkin–Bürger algo-
rithm for finding the skeleton of a polyhedral cone and its applica-
tions. In M.A. Antonets, V.E. Alekseyev, and V.N. Shevchenko, edi-
tors, Proceeding of the 2nd International Conference “Mathematical

Algorithms”, pages 72–74, Nizhni Novgorod, 1997. Nizhni Novgorod
State University. Russian.

[Zol12] N.Yu. Zolotykh. New modification of the double description method
for constructing the skeleton of a polyhedral cone. Computational

mathematics and mathematical physics, 52(1):146–156, 2012.

31


	What's new?
	Introduction
	Theoretical Preliminaries
	Polyhedral Cones
	Polyhedra
	The main idea of the algorithm

	How to Build
	How to Use
	Options
	More Examples
	Cube With a Cut Vertex
	Implicit equations and redundant inequalities
	Skeleton ``extended'' format
	Avis–Fukuda format
	Voronoi Diagram
	Delaunay Triangulation


