
Skeleton 02.01.00 Manual

Nikolai Yu. Zolotykh∗

November 16, 2009

Abstract

This paper describes Skeleton: implementation of several new vari-
ations of well-known Double Description Method (DDM) for solving the
vertex and facet enumeration problems for convex polyhedra. New en-
hancements makes Skeleton quite competitive in comparison with other
implementations of DDM. The source code of Skeleton 02.01.00 is avail-
able at http://www.uic.nnov.ru/~zny/skeleton.

Contents

1 What’s new? 2

2 Introduction 3

3 Theoretical Preliminaries 3
3.1 Polyhedral Cones . 3
3.2 Polyhedra . 6
3.3 The main idea of the algorithm 8

4 How to Install 9

5 How to Use 9

6 Options 12

7 More Examples 16
7.1 Cube With a Cutted Vertex . 16
7.2 Implicit equations and redundant inequalities 19
7.3 Skeleton “extended” format . 20
7.4 Avis–Fukuda format . 21
7.5 Voronoi Diagram . 22
7.6 Delaunay Triangulation . 26

∗N.I. Lobachevsky State University of Nizhni Novgorod, Russia

1

1 What’s new?

Skeleton 02.00.00 May 7, 2006
It is new, completely re-written, fast version of Skeleton.

Skeleton 02.00.01 November 1, 2006
Skeleton now runs on Linux platform. Source code is available.

Skeleton 02.00.02 November 7, 2006
Floating point arithmetic is now supported.

Skeleton 02.00.03 May 30, 2007
Time bug fixed.

Skeleton 02.00.04 October 6, 2009
A bug occuring on 64 bit architecture fixed. (Thanks to Sergey Lyalin
and Sergey Lobanov.)

Skeleton 02.01.00 October 16, 2009:

• The possibility to explicitly set a system of linear equations in addition to
a system of linear inequalities. See --skeletonformat option.

• New option --ridges for constructing ridges.

• New option --facetadjacency for constructing lists of adjacent facets.

• New option --verifyine to determine implicit equations and redundand
inequalities in the input system.

• Avis–Fukuda format is now (partially) supported. See --avisfukudaformat
option.

• New option --silence is available.

• New options --inputfromstdin, --noinputfromstdin are now available.

• According GNU style in long option names double hyphen is used instead
of single hypen, for example, --minindex instead of -minindex.

• -graphinc option is renamed --graphadj (from graph of potential adja-

cency).

• -inc option is renamed --dis (from discrepancies).

• -minedges, -maxedges options are renamed --minpairs and --maxpairs

correspondingly.

• -incext, -noincext, -incine, -noincine options are renamed --extinc,
--noextinc, --ineinc, --noineinc correspondingly.

2

2 Introduction

It is well known that any polyhedron in Rd can be represented by the following
two ways:

(1) as a set of solutions to the system of linear inequalities, or

(2) as the (Minkowski’s) sum of the conic hull of some vectors and the convex
hull of some points in Rd.

The problem to generate representation (2) if representation (1) is available
is called the vertex enumeration problem. The converse one is called the facet

enumeration problem, or convex hull problem.
Analogously, any polyhedral cone in Rd can be represented by the following

two ways:

(1) as a set of solutions to the system of homogenius linear inequalities, or

(2) as a set of all non-negative linear combinations of some vectors in Rd.

There is a standard way to reduce vertex/facet enumeration problem for
polyhedra to the correspondent problem for polyhedral cones. From theoretical
point of view it is convenient to consider both problems just for polyhedral
cones.

The program Skeleton implements several variations of Double Description
Method (DDM) [MRTT53] solving the vertex and facet enumeration problems.
DDM is considered in a few papers and monographs [Bur56, Che64, Che65,
Che68a, VPS84, Che68b, FQ88, Ver92, FP96, SC97, SG03].

Skeleton works with the system of linear inequalities whose entries are
integers (arbitrary precision or 4 bytes long ints) or reals (double floating point
numbers).

In our implementation we use ideas descibed in [VPS84, FP96, SC97] and
some new enhancements. All these makes Skeleton quite competitive in
comparison with other implementations of DDM, in particular, [Ver92, Fuk02,
Gru03]. Early version of Skeleton is described in [Zol97].

Skeleton can be distributed under the terms of GNU GENERAL PUBLIC
LICENSE Version 2. Read file COPYING.

Thanks to Sergey Lobanov you can use Skeleton on-line (without install it).
Visit http://www.arageli.org.

3 Theoretical Preliminaries

3.1 Polyhedral Cones

Polyhedral cone C is the set of all solutions to a system of homogenius linear
inequalities and equations Ax ≥ 0, Bx = 0:

C =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

, (?)

3

where A ∈ Rm×d, B ∈ Rt×d (m or/and t may be equal to 0 that corresponds to
the case when inequalities or/and equations are absent accordingly). The case
of system of equations and inequalities can be obviously reduced to the case
of system with only inequalities. For this instead of Bx = 0 we can consider
Bx ≥ 0 and −Bx ≥ 0. But it will be more convinient to consider the more
general case.

The maximal subspace contained in the cone C can be described as a set of
all solutions to the system Ax = 0, Bx = 0. The dimension of this subspace is
equal to d − rank(A>, B>). The cone is called pointed if it contains only zero
subspace, that’s equivalent to rank(A>, B>) = d.

Let a ∈ Rd, a 6= 0. The hyper-plane
{

x ∈ Rd : ax = 0
}

is called supporting

for the cone C if C ⊆ {x : ax ≥ 0} or C ⊆ {x : ax ≤ 0}. The intersection of
the cone with a supporting hyper-plain is called its face.

Consider the system of vectors u1, . . . , up in Rd. The linear hull Lin(u1, . . . , up)
of the system is the set of all linear combinations of these vectors:

Lin(u1, . . . , up) = {λ1u1 + . . . + λpup : λi ∈ R (i = 1, . . . , p)} .

The non-negative, or conic, hull NonNeg(u1, . . . , up) of the system is the set of
all non-negative linear combinations:

NonNeg(u1, . . . , up) = {λ1u1 + . . . + λpup : λi ∈ R, λi ≥ 0 (i = 1, . . . , p)} .

Theorem 1 (Minkowski) For any polyhedral cone C in Rd there exist vectors

u1, . . . , up, v1, . . . , vq in Rd such that

C = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq). (??)

Obviously, w.l.g. in Minkowski’s theorem we can omit Lin(u1, . . . , up) item
and instead of (??) write simply C = NonNeg(v1, . . . , vq).

Using matrix notation we can re-formulate Minkowski’s theorem as follows.
For any matrices A ∈ Rm×d and B ∈ Rt×d there exist matrices V ∈ Rq×d and
U ∈ Rp×d such that

{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

= {x = µV + λU : µ ∈ Rn, µ ≥ 0, λ ∈ Rs} .

Vectors u1, . . . , up, v1, . . . , vq (equvalently, matrices U and V) can be chosen
in such a way that the following properties of minimality hold:

1. p = d − rank(A>, B>) and Lin(u1, . . . , up) is the maximal subspace L

included in C (so, the system u1, . . . , up is a basis of L); and

2. q is minimal among all possible q such that (??) holds (this means also
that the system v1, . . . , vq is irreducible); in this case the system v1, . . . , vq

is called a skeleton of the cone C.

The vectors in a skeleton are unique up to any positive multiplyer and any item
in L. If the cone C is pointed, i.e. rank(A>, B>) = d and, hence, p = 0, then
v1, . . . , vq (and — up to positive multiplyer — only they) are extreme rays of C.

4

We’ll say that two vectors in a skeleton are adjacent if minimal face containing
both does not contain any other vector in the skeleton.

The converse theorem to Minkowski’s one is correct and is known as Weyl’s
theorem.

Theorem 2 (Weyl) For any vectors u1, . . . , up, v1, . . . , vq in Rd there exist

matrices A ∈ Rm×d and B ∈ Rt×d such that

Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

.

Obviously, w.l.g. in Weyl’s theorem we can omit linear equations Bx = 0
and simply write Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) =

{

x ∈ Rd : Ax ≥ 0
}

.
Using matrix notation we can re-formulate Weyl’s theorem as follows. For

any matrices U ∈ Rp×d and V ∈ Rq×d there exist matrices A ∈ Rm×d and
B ∈ Rt×d such that

{x = λU + µV : λ ∈ Rp, µ ∈ Rq, µ ≥ 0} =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

.

Matrices A and B can be chosen in such a way that the following properties

of minimality hold:

1. t = d− rank {u1, . . . , up, v1, . . . , vq} and {x : Bx = 0} is the minimal sub-
space containing C (this means also that the system Bx = 0 is irreducible);
and

2. m is minimal among all possible m such that (?) holds (this means also
that the system Ax ≥ 0 is irreducible).

The rows in such a matrix A are unique up to any positive multiplyer and any
item which is linear combinations of rows in B. The rows in A correspond to
faces of maximum dimension. In particular, if the cone C is full-dimensional,
i.e. rank {u1, . . . , up, v1, . . . , vq} = d and, hence, t = 0, then the rows in A

correspond to facets of C.
These theorems suggest two fundamental problems. First one is to obtain a

dual representation (??) if a representation (?) is known. The second problem
is converse. It turns out that these problems are computationaly equivalent as
the following theorem shows. So, we can concentate on the first problem.

Theorem 3 (Farkas–Minkowski–Weyl) If

C =
{

x ∈ Rd : Ax ≥ 0, Bx = 0
}

= {x = µV + λU : µ ∈ Rq, µ ≥ 0, λ ∈ Rp}

then

C′ =
{

x ∈ Rd : V x ≥ 0, Ux = 0
}

=
{

x = µA + λB : µ ∈ Rm, µ ≥ 0, λ ∈ Rt
}

.

Moreover, if rows in V and U form a skeleton of C and a basis of mini-
mal subspace correspondingly, then V x ≥ 0, Ux = 0 are irreducible systems
determining C′ and viceversa. Analogous property is true for A and B.

5

3.2 Polyhedra

Polyhedron P is the set of all solutions to a system of linear inequalities and
equations Ax ≥ b, Bx = c:

P =
{

x ∈ Rd : Ax ≥ b, Bx = c
}

, (∗)

where A ∈ Rm×d, B ∈ Rt×d, b ∈ Rm, c ∈ Rt (m or/and t may be equal to
0 that corresponds to the case when inequalities or/and equations are absent
accordingly). The case of system of equations and inequalities can be obvi-
ously reduced to the case of system with only inequalities. But it will be more
convinient to consider the more general case.

Let a ∈ Rd, a 6= 0, α ∈ R. The hyper-plane
{

x ∈ Rd : ax = α
}

is called
supporting for the polyhedron P if P ∩{x : ax = α} 6= ∅ and P ⊆ {x : ax ≥ α}
or P ⊆ {x : ax ≤ α}. The intersection of the polyhedron with a supporting
hyper-plane is called a face of the polyhedron. The face whith dimension 0 (i.e.
a point) is called a vertex of P .

Consider the system of vectors w1, . . . , ws in Rd. The convex hull Conv(w1, . . . , ws)
of the system is the set of all convex combinations of these vectors, i.e.:

Conv(w1, . . . , ws) =

{

λ1w1 + . . . + λsws : λi ∈ R, λi ≥ 0,

s
∑

i=1

λi = 1

}

.

The set of points in Rd which can be represented as a convex hull of some finite
system of points is called polytope.

From Minkowski’s theorem we get the following.

Theorem 4 For any polyhedron P in Rd there exist vectors u1, . . . , up, v1, . . . , vq,

w1, . . . , ws in Rd such that

P = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) + Conv(w1, . . . , ws). (∗∗)

So, any polyhedron is the sum of a cone and a polytope.

Obviously, w.l.g. in the theorem we can omit Lin(u1, . . . , up) item and in-
stead of (∗∗) write simply P = NonNeg(v1, . . . , vq) + Conv(w1, . . . , ws).

Vectors u1, . . . , up, v1, . . . , vq, w1, . . . , ws can be chosen in such a way that
the following properties of minimality hold:

1. u1, . . . , up is a basis of the subspace L associated with the maximal linear
variety in P ; and

2. q and s are minimal among all possible q and s such that (∗∗) holds (this
means also that the systems v1, . . . , vq and w1, . . . , ws are irreducible).

In this case vectors w1, . . . , ws are unique up to any item in L; vectors v1, . . . , vq

are unique up to any positive multiplyer and any item in L. If p = 0 then points
w1, . . . , ws (and only they) are vertices of P and vectors v1, . . . , vq (and only
they) are extreme rays of P .

6

The problem of constructing the representation (∗∗) if representation (∗) is
available is called the vertex enumeration problem. It can be reduced to the
analogous problem for cones as follows.

Consider the cone in Rd+1

C =
{

(x1, . . . , xn, xn+1)
> ∈ Rd+1 : Ax ≥ bxn+1, Bx = cxn+1, xn+1 ≥ 0

}

,

where x = (x1, . . . , xn)>. For the cone C we can get a dual representation

C = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq)

for some vectors u1, . . . , up, v1, . . . , vq in Rd+1.
Let ui = (ui, ui,n+1) (i = 1, . . . , p), vi = (vi, vi,n+1) (i = 1, . . . , q). Since the

system of homogenius linear inequalities and equations contains the inequality
xn+1 ≥ 0, then it is clear that ui,n+1 = 0 (i = 1, . . . , p). Suppose w.l.g. that
vi,n+1 = 0 (i = 1, . . . , s), vi,n+1 6= 0 (i = s + 1, . . . , q). Now it is not hard to see
that the initial polyhedron P has the following dual representation:

P = Lin(u1, . . . , up)+

+ NonNeg(v1, . . . , vs) + Conv

(

1

vs+1,d+1

· vs+1, . . . ,
1

vq,d+1

· vq

)

.

Moreover, if the system u1, . . . , up is a basis of the maximal linear subspace
in C and the system v1, . . . , vq is a skeleton of C then the system of vectors
constructed to describe P also has the property of minimality. In particular, if

p = 0 then
1

vs+1,d+1

· vs+1, . . . ,
1

vq,d+1

· vq are vertices of P .

From Weyl’s theorem we get the following.

Theorem 5 For any vectors u1, . . . , up, v1, . . . , vq, w1, . . . , ws, in Rd there ex-

ist matrices A ∈ Rm×d and B ∈ Rt×d and vectors b ∈ Rm, c ∈ Rt such that

Lin(u1, . . . , up) + NonNeg(v1, . . . , vq) + Conv(w1, . . . , ws) =

=
{

x ∈ Rd : Ax ≥ b, Bx = c
}

.

Matrices A and B can be chosen in such a way that the following properties

of minimality hold:

1. the system Bx = c is irreducible and {x : Bx = c} is the minimal linear
variety containing P ; and

2. m is minimal among all possible m such that (∗) holds (this means also
that the system Ax ≥ 0 is irreducible).

In this case the rows in the matrix (A, b) correspond to faces of maximum
dimension. In particular, if P is full-dimensional, i.e.

rank{u1, . . . , up, v1, . . . , vq, w1 − ws, . . . , ws−1 − ws} = d

7

and, hence, t = 0, then the rows in (A, b) correspond to facets of P .
The problem of constructing the representation (∗) if representation (∗∗) is

available is called the facet enumeration problem, or the convex hull problem. It
can be reduced to the analogous problem for cones as follows.

In Rd+1 consider the cone

C = Lin(u1, . . . , up) + NonNeg(v1, . . . , vq, w1, . . . , ws),

where ui = (ui, 0) (i = 1, . . . , p), vi = (vi, 0) (i = 1, . . . , q), wi = (wi, 1)
(i = 1, . . . , s) and find its representation

C =
{

(x1, . . . , xd, xd+1)
> ∈ Rd+1 : Ax − bxd+1 ≥ 0, Bx − cxd+1 = 0

}

,

where x = (x1, . . . , xd) ∈ Rd. Now it is not hard to see that the initial polyhe-
dron P has the following representation:

P =
{

x ∈ Rd : Ax ≥ b, Bx = c
}

.

Moreover, if A, B, b, c are such that each of the systems Ax − bxd+1 ≥ 0 and
Bx = cxd+1 is irreducible and

{

(x1, . . . , xd, xd+1)
> ∈ Rd+1 : Bx − cxd+1 = 0

}

is the minimal subspace containing C then the system of inequalities and equa-
tions constructed to describe P also has a property of minimality.

3.3 The main idea of the algorithm

Given a matrix A ∈ Rm×d, DDM generates a basis of maximal subspace and
a skeleton of the cone C =

{

x ∈ Rd : Ax ≥ 0
}

. Obviously, the case then the
cone is defined by a system of linear inequalities and equations can be reduced
to the case with only inequalities.

In the preliminary step of DDM the rank r of A and a basis of the maximal
subspace containing in C are founded. Also, a skeleton of the cone determined
by some irreducible subsystem containing r inequalities is generated. Then,
other inequalities are added one after the other and every time the skeleton is
re-conctructed. Consider this slightly in detail.

Let K be a cone determined by some subsystem of Ax ≥ 0. Suppose that
a skeleton of K is known. Consider what will happen with the skeleton then a
new inequality ax ≥ 0 is added.

Each vector in the skeleton of K falls to one of the following sets:

1. W0 is the set of all vectors w in the skeleton such that aw = 0;

2. W+ is the set of all vectors w in the skeleton such that aw ≥ 0;

3. W− is the set of all vectors w in the skeleton such that aw ≤ 0.

A skeleton of the new cone is formed by all elements in W+ and W0 and vectors
which we obtain as follows. For each pair of vectors w′ ∈ W+ and w′′ ∈ W−

adjacent in K we obtain their linear combination w satisfying to equality aw = 0.
Every such w should be included to the skeleton of the new cone.

8

Variations of DDM differs one from another by ordering in which inequali-
ties are choose from the system, the methods used to find adjacent rays, a time
when the adjacency is computed and others [VPS84, FP96, SC97]. Checking
the adjacency seems the most time-expensive procedure in DDM and differ-
ent techniques to determine what pairs of vectors should be verifying are used
[FP96].

4 How to Install

The source code of Skeleton is available at http://uic.nnov.ru/~zny/skeleton.
The package contains a documentation and two C++ files: skeleton.cpp and
ddm.hpp.

Skeleton uses Arageli library [Ara09]. To compile Skeleton first of all
you should install Arageli. Suppose that you have Arageli installed on your
computer.

To compile the code in standard Linux environment you need gcc version 4.
Type

g++ -O2 skeleton.cpp -o skeleton -larageli

Files skeleton.cpp and ddm.hpp are supposed to be in the current directory.
Also, gcc must know the locations of Arageli include files and library.

To compile the code in Windows you can use MS Visual Studio C++ Com-
piler version 6.0 or later. Type

cl /O2 skeleton.cpp arageli.lib

5 How to Use

Given a matrix A ∈ Zm×d, program Skeleton generates a basis of maximal
subspace and a skeleton of the cone C =

{

x ∈ Rd : Ax ≥ 0
}

.
To use Skeleton, first of all, one should prepare file with your data. This

file must contain the size and entries of matrix A. Entries of A should be integer.
Numbers are separated by spaces and blank lines. For example, if you want to
find a skeleton of the cone C defined as a set of solution to the system































x1 ≥ 0,

− x1 + x3 + x4 ≥ 0,

− x2 + x3 ≥ 0,

x3 + x4 ≥ 0,

x1 + x2 + x4 ≥ 0,

− x1 − x2 − x4 ≥ 0

then the input file (say example.ine) is

9

6 4

1 0 0 0

-1 0 1 1

0 -1 1 0

0 0 1 1

1 1 0 1

-1 -1 0 -1

To run Skeleton just type in the command prompt:

skeleton filename

where filename is the name of the input file. Example:

skeleton example.ine

Skeleton produces two files: “output” file, “log” file and “summary”
file. By default, their names are obtained by adding extention .out, .log,
.sum respectively to input file name. In our example Skeleton produces files
example.ine.out, example.ine.log, and example.ine.sum.

The output file contains sizes and entries of matrix U (vectors of a basis in
row-wise order) and matrix V (vectors of a skeleton). Also, the file can contain
other information (it depends on options used; see the list of available options
below). In our example we get the following file example.ine.out:

* Basis:

1 4

0 -1 -1 1

* Extreme rays:

2 4

1 -1 1 0

0 0 1 0

Thus, we get u1 = (0,−1,−1, 1)>, v1 = (1,−1, 1, 0)>, v2 = (0, 0, 1, 0)> and
C = Lin(u1) + NonNeg(v1, v2).

The log file contains computation hystory. By default, this information is
also displayed on stdcrt during computation. In our example we get the following
file example.ine.log:

rank = 3

Initial set of inequalities:

1 3 2

--

Iteration 4 / 6 (Inequality No 4 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 0

The number of rays in the current hyperplane = 1

10

Total number of rays = 3

The current inequality is redundant and it follows from previous ones

--

Iteration 5 / 6 (Inequality No 5 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 1

The number of rays in the current hyperplane = 0

Total number of rays = 3

All edges (3) being scanned for generating new rays

New 2 rays constructed

Constructing new edges in the current hyperplane...

All 2 rays being scanned

0 new edges constructed

--

Iteration 6 / 6 (Inequality No 6 in the original system)

Rays classifying...

The number of rays inside the current cone = 0

The number of rays outside the current cone = 2

The number of rays in the current hyperplane = 2

Total number of rays = 4

All edges (3) being scanned for generating new rays

New 0 rays constructed

**

Final constructing of all edges in the cone...

All 2 rays being scanned

Final number of edges = 1

The summary file contains computation summary. By default, this informa-
tion are also displayed on stdcrt after computation. In our example we get the
following file example.ine.sum:

Computation done

Command line: skeleton example.ine

Input file: example.ine

Output file: example.ine.out

Log file: example.ine.log

Summary file: example.ine.sum

11

ine sizes = 6 x 4

equ sizes = 0 x 4

bas sizes = 1 x 4

ext sizes = 2 x 4

inc sizes = 2 x 6

Order = --minindex

Prefixed = --prefixedorder

Graphadj = --graphadj

Arith = --bigint

Plusplus = --plusplus

Total number of rays generated (all iterations) = 5

Total number of edges generated (all iterations) = 4

Computation starts: Mon Nov 16 23:55:58 2009

Computation terminates: Mon Nov 16 23:55:58 2009

Time elapsed = 0.09 s (0 h 0 m 0.09 s)

You may set different options affecting the process of computation and the
output of information:

skeleton filename options

where options is a list of options. Each option is an abbreviation usually
beginning with double hyphen. Options are separated by spaces. Example:

skeleton example.ine --lexmin --adjacency

Complete list of all available options is in the next section.

6 Options

The following options are available (the default parameters are in braces):

{--minindex}, {--maxindex}, --lexmin, --lexmax, --random, --mincutoff,
--maxcutoff, --minpairs, --maxpairs
These options affect the ordering of inequalities to be added at each
iteration of DDM.

--prefixedorder, --noprefixedorder
If options --mincutoff, --maxcutoff, --minpairs, --maxpairs are cho-
sen then only --noprefixedorder is possible. In other cases both options
are available; the default one is --prefixedorder.

{--graphadj}, --nographadj
These affect the way of determining adjacent vectors.

{--plusplus}, --noplusplus
If option --plusplus is chosen then only the pairs of adjacent vectors

12

that will be necessary on the future iterations are constructed. If option
--noplusplus is chosen then all edges are constructed on each iteration.

{--bigint}, --int, --float
By default, arbitrary precision integer arithmetic is used. Option --int

forces to use ordinary (4 bytes) integer precision arithmetic. Option
--float forces to use double floating point (8 bytes) arithmetic. Option
--rational forces to use rational arithmetic when exact enumerator /
exact denominator pair is used to represent rational number.

--zerotol value

The option affects only if option --float is used. This is used to change
a zero tolerance for floating point computation. A real value is considered
as zero if its absolute value is at most the tolerance. The default value
for the zero tolerance is 1e-8.

--edges, {--noedges}
Option --edges forces to find edges, i.e. all pairs of adjacent vectors in
the skeleton.

--adjacency, {--noadjacency}
Option --adjacency forces to find the lists of skeleton vectors adjacent
to each one.

--ridges, {--noridges}
Option --ridges forces to find ridges, i.e. all pairs of adjacent facets.

--facetadjacency, {--nofacetadjacency}
Option --facetadjacency forces to find the lists of facets adjacent to
each one.

--verifyine, {--noverifyine}
Option --verifyine forces to determine implicit equations and redun-
dand inequalities in the input system.

--inputfile filename

This option defines input file name. skeleton --inputfile filename

is equivalent to skeleton filename.

-o filename --outputfile filename

This option sets the name of output file. By default, this name is obtained
by adding extention .out to input file name. If input was from stdin then
output file is skeleton.out.

--logfile filename

This option sets the name of log file. By default, this name is obtained
by adding extention .log to input file name. If input was from stdin
then log file is skeleton.log.

--summaryfile filename

This option sets the name of summary file. By default, this name is
obtained by adding extention .sum to input file name. If input was from
stdin then log file is skeleton.sum.

13

--inputfromstdin, {--noinputfromstdin}
--inputfromstdin forces to read input information fron stdin instead of
file.

{--simpleformat}, --skeletonformat, --avisfukudaformat
--skeletonformat indicates that input containes both inequalities and
equations (both A and B matrices).
--avisfukudaformat indicates that input is in Avis–Fukuda format (see
[Fuk02]); all options in the file are ignored; only matrix in begin–end
parentheses is read; the number type specificator (integer, ration etc.)
is ignored.

{--outputinfile}, --nooutputinfile
If --nooutputinfile is chosen then Skeleton will not put results in
output file.

--outputonstdout, {--nooutputonstdout}
If --outputonstdin is chosen then Skeleton will put results on stdout.

{--loginfile}, --nologinfile
If --nologinfile is chosen then Skeleton will not put log information
in log file.

{--logonstdout}, --nologonstdout
If --nologonstdout is chosen then Skeleton will not put log informa-
tion on stdout.

{--summaryinfile}, --nosummaryinfile
If --nosummaryinfile is chosen then Skeleton will not put summary
information in summary file.

{--summaryonstdout}, --nosummaryonstdout
If --nosummaryonstdout is chosen then Skeleton will not put summary
information on stdout.

--silence

This option is equivalent to --nooutputonstdout, --nologonstdout,
--nosummaryonstdout.

--ine, {--noine}
If --ine is chosen then Skeleton will put the input matrix A (coeffi-
cients of linear inequalities) on stdout or/and in outputfile. This works
only if option --outputinfile or --outputonstdout correspondingly
turns on.

--equ, {--noequ}
If --equ is chosen then Skeleton will put the input matrix B (coef-
ficients of linear equations) on stdout or/and in outputfile. This works
only if option --outputinfile or --outputonstdout correspondingly
turns on.

{--ext}, --noext
If --noext is chosen then Skeleton will not put the matrix V (with
entries of skeleton vectors) on stdout and in outputfile. This works only

14

if option --outputinfile or --outputonstdout correspondingly turns
on.

{--bas}, --nobas
If --nobas is chosen then Skeleton will not put the matrix U (with
entries of basis of maximal subspace contained in the cone) on std-
out and in outputfile. This works only if option --outputinfile or
--outputonstdout correspondingly turns on.

--dis, {--nodis}
If --dis is chosen then Skeleton will put the discrepancies matrix V A>

on stdout or/and in outputfile. This works only if option --outputinfile

or --outputonstdout correspondingly turns on.

--extinc, {--noextinc}
If --extinc is chosen then for each vector in skeleton the program will
print (on stdout or/and in outputfile) iniqualities which hold as equal-
ity. This works only if option --outputinfile or --outputonstdout

correspondingly turns on.

--ineinc, {--noineinc}
If --ineinc is chosen then for each inequality in the initial system the
program will print (on stdout or/and in outputfile) vectors in the skeleton
for which the inequality holds as equality. This works only if option
--outputinfile or --outputonstdout correspondingly turns on.

--matrices, --nomatrices
--matrices is equivalent to --ine, --ext, --bas, --inc; --nomatrices
is equivalent to --noine, --noext, --nobas, --noinc. This works only
if option --outputinfile or --outputonstdout turns on.

{--log}, --nolog
If --nolog is chosen no log information will not put on stdout and in log
file. This works only if option --summaryinfile or --summaryonstdout
turns on.

{--summary}, --nosummary
If --nosummary is chosen no summary information (input/output/log
file names, sizes of matrices and option values) will not put on stdout
and in summary file. This works only if option --summaryinfile or
--summaryonstdout turns on.

-h or --help
skeleton -h prints the list of available options and terminates the pro-
gram. skeleton --help does the same.

-v or --version
skeleton -v prints Skeleton version and terminates the program.
skeleton --version does the same.

--copying

skeleton --copying prints copyright info: GNU GENERAL PUBLIC
LICENSE Version 2.

15

x1

x2

x3

x2 ≥ 0

x3 ≥ 0

x2 ≤ 1

2x1 + 2x2 + 2x3 ≤ 5

x3 ≤ 1

x1 ≤ 1

x1 ≥ 0

1

1

1

Figure 1: Cube with a cutted vertex. Facet representation

7 More Examples

7.1 Cube With a Cutted Vertex

Consider the polyhedron described by the following system:







































x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0,

x1 ≤ 1,

x2 ≤ 1,

x3 ≤ 1,

2x1 + 2x2 + 2x3 ≤ 5.

(1)

It is a cube with a “cutted” vertex (see Fig. 1).
The corresponding cone is described by the following homogenious system:















































x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0,

−x1 + x4 ≥ 0,

− x2 + x4 ≥ 0,

− x3 + x4 ≥ 0,

−2x1 − 2x2 − 2x3 + 5x4 ≥ 0,

x4 ≥ 0

(2)

(setting x4 = 1 we get the initial system). So, input file (named cwcv.ine) is

16

x1

x2

x3

b

b

b

b

b

b

b

b

b

b

v1 v2

v3

v4
v5

v6 v7

v8

v9

v10

Figure 2: Cube with a cutted vertex. Vertex representation

8 4

0 1 0 0

0 0 1 0

0 0 0 1

1 -1 0 0

1 0 -1 0

1 0 0 -1

5 -2 -2 -2

1 0 0 0

Running Skeleton with

skeleton cwcv.ine --edges --ineinc

we get the following file cwcv.ine.out:

* Basis:

0 4

* Extreme rays:

10 4

1 1 0 0

1 1 1 0

2 2 2 1

1 1 0 1

2 2 1 2

1 0 0 1

1 0 1 1

2 1 2 2

1 0 1 0

1 0 0 0

17

* Edges:

15

1 2

1 4

1 10

2 3

2 9

3 5

3 8

4 5

4 6

5 8

6 7

6 10

7 8

7 9

9 10

* Inequalities-to-rays incidence:

1: 6 7 9 10

2: 1 4 6 10

3: 1 2 9 10

4: 1 2 3 4 5

5: 2 3 7 8 9

6: 4 5 6 7 8

7: 3 5 8

8:

Matrix with entries of the basis is empty (it contains 0 rows), hence the
polyhedron does not contain any non-zero linear variety. Matrix with entries
of the skeleton has 10 rows, hence the polyhedron has 10 vertex (see Fig. 2).
The forth coordinate corresponds to the denominator in entries of all these
vertices. They are v1 = (1, 0, 0)>, v2 = (1, 1, 0)>, v3 = (1, 1, 1

2
)>, v4 = (1, 0, 1)>,

v5 = (1, 1

2
, 1)>, v6 = (0, 0, 1)>, v7 = (0, 1, 1)>, v10 =

(

1

2
, 1, 1

)>
, v1 = (0, 1, 0)>,

v1 = (0, 0, 0)>.
Also, we have computed all edges, i.e. pairs of adjacent vertices. The poly-

hedron has 15 edges. They are v1–v2, v1–v4, v1–v10, v2–v3, v2–v9, v3–v5, v3–v8,
v4–v5, v4–v6, v5–v8, v6–v7, v6–v10, v7–v8, v7–v9, v9–v10.

Information concerning “Inequalities-to-rays incidence” tell us that 7 facets
are formed by vertices v6, v7, v9, v10; v1, v4, v6, v10; v1, v2, v9, v10; v1, v2, v3,
v4, v5; v2, v3, v7, v8, v9; v4, v5, v6, v7, v8; v3, v5, v8 correspondingly.

Now we can check our computations by “reversing” them. Form the input
file (named cwcv.ext) containing entries of vertices found:

10 4

1 1 0 0

1 1 1 0

18

2 2 2 1

1 1 0 1

2 2 1 2

1 0 0 1

1 0 1 1

2 1 2 2

1 0 1 0

1 0 0 0

and evoke Skeleton:

skeleton cwcv.ext

We get the following file cwcv.ext.out:

* Basis:

0 4

* Extreme rays:

7 4

0 0 0 1

0 1 0 0

0 0 1 0

1 0 -1 0

1 0 0 -1

5 -2 -2 -2

1 -1 0 0

Since the matrix with “basis” is empty the polyhedron has full dimension. The
matrix with “skeleton” has 7 rows. They correspond to exactly the same in-
equalities as in (1), so the polyhedron has 7 facets. We remark that in the list
obtained there is no row corresponding to the inequality x4 ≥ 0 because in our
case it is redundant in (2).

7.2 Implicit equations and redundant inequalities

Skeleton can find implicit equations and redundant inequalities in a system.
Let’s consider the system















































x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0,

x4 ≥ 0,

x1 + 2x2 + 3x4 ≥ 0,

x1 + x2 + x3 + 3x4 ≥ 0,

x1 − 2x2 + x3 + 3x4 ≥ 0,

−x1 + 2x2 − x3 − 3x4 ≥ 0.

So, the input file (named equ.ine) is

19

8 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 2 0 3

1 1 1 3

1 -2 1 3

-1 2 -1 -3

Running Skeleton with

skeleton equ.ine --verifyine

we get the following file equ.ine.out:

* Basis:

0 4

* Extreme rays:

3 4

2 1 0 0

0 1 2 0

0 3 0 2

* Implicit equations:

2

7 8

* Redundant inequalities:

3

2 5 6

This mean that two inequalities in the original system , the 7th and the 8th,
are implicit equations; the 2nd, 5th and 6th inequalities are redundant.

7.3 Skeleton “extended” format

Skeleton can treat systems containing both inequalities and equations (explic-
itly defined): both A and B matrices. For this it is necessary to use a special
format in the input file. Here is an example:















x1 − x2 − x3 = 0,

x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0.

The input file (names sf.ine) follows.

* Equations:

1 3

1 -1 -1

20

* Inequalities:

3 3

1 0 0

0 1 0

0 0 1

Running Skeleton with

skeleton sf.ine --skeletonformat

we get the following file sf.ine.out:

* Basis:

0 3

* Extreme rays:

2 3

1 1 0

1 0 1

7.4 Avis–Fukuda format

Skeleton partially supports Avis–Fukuda format (see [Avi, Fuk02]). All op-
tions (except a matrix inside begin–end parentheses) in the file are ignored.
The number type specificator (integer, ration etc.) is also ignored. Note that
the most of options in Avis–Fukuda format has equivalent ones in Skeleton

but they must be indicated in command line.
Let’s consider, for example, the file ucube.ine taken from K. Fukuda cdd

repository [Fuk02]:

* file name: ucube.ine

* 3 cube without one "lid"

H-representation

begin

6 4 integer

2 -1 0 0

2 0 -1 0

-1 1 0 0

-1 0 1 0

-1 0 0 1

4 -1 -1 0

end

incidence

adjacency

input_adjacency

input_incidence

21

Run Skeleton:

skeleton ucube.ine --avisfukudaformat --adjacency --facetadjacency

--extinc --ineinc

The output file is

* Basis:

0 4

* Extreme rays:

5 4

0 0 0 1

1 2 2 1

1 2 1 1

1 1 2 1

1 1 1 1

* Rays-to-inequalities incidence:

1: 1 2 3 4 6

2: 1 2 5 6

3: 1 4 5

4: 2 3 5

5: 3 4 5

* Facet adjacency:

1: 2 4 5

2: 1 3 5

3: 2 4 5

4: 1 3 5

5: 1 2 3 4

6:

The log file is

Avis-Fukuda format for input

Option = H-representation

Option = incidence -> ignored

Option = adjacency -> ignored

Option = input_adjacency -> ignored

Option = input_incidence -> ignored

rank = 4

Initial set of inequalities:

6 3 4 5

--

Iteration 5 / 6 (Inequality No 2 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 1

The number of rays in the current hyperplane = 1

22

Total number of rays = 4

All edges (6) being scanned for generating new rays

New 2 rays constructed

Constructing new edges in the current hyperplane...

All 3 rays being scanned

0 new edges constructed

--

Iteration 6 / 6 (Inequality No 1 in the original system)

Rays classifying...

The number of rays inside the current cone = 2

The number of rays outside the current cone = 1

The number of rays in the current hyperplane = 2

Total number of rays = 5

All edges (5) being scanned for generating new rays

New 1 rays constructed

**

Final constructing of all edges in the cone...

All 5 rays being scanned

Final number of edges = 8

7.5 Voronoi Diagram

Let W be a system of s points in Rd. For each w ∈ W we can consider the set

VS(w) =
{

x ∈ Rd : ∀v ∈ W \ {w} dist(x, p) ≤ dist(x, q)
}

,

where dist is the Euclidean distance function. The set VS(w) is called a Voronoi

cell. It is a polyhedron. Its vertices are called Voronoi vertices and extreme rays
are called Voronoi rays. The set {VS(w) : w ∈ W} of all Voronoi cells is called
Voronoi diagram (see Fig. 3). For generating Voronoi diagram the following
construction is widely used.

For each w ∈ W consider the hyperplane tangent at w = (w1, . . . , wd)
> to

the paraboloid
{

(x1, . . . , xd, xd+1) : xd+1 = x2
1 + . . . + x2

d

}

. This hyperplane is
represented by the following equation:

−2w1x1 − . . . − 2wdxd + xd+1 + w2
1 + . . . + w2

d = 0.

Replacing the equality with inequality ≥ and considering these inequalities for
each w ∈ W we get the system of s linear inequalities. Let P be the polyhedron
of all solutions to the system. It turns out that P is a lifting of Voronoi diagram
to one higher dimensional space; and the projection of each facet of P associated
with w is exactly the Voronoi cell VS(w). The vertices and extreme rays of P

project exactly to the Voronoi vertices and rays, respectively [Fuk04].
As an example consider the set of points (0, 0)>, (2, 0)>, (−2, 0)>, (0, 1)>,

(1, 2)>, (−1, 2)>, (0, 3)>. For generating their Voronoi diagram consider the

23

b bb

b

bb

b

w1 w2w3

w4

w5w6

w7

Figure 3: Voronoi diagram for the set of points

system














































+ x3 ≥ 0,

−4x1 + x3 + 4x4 ≥ 0,

4x1 + x3 + 4x4 ≥ 0,

− 2x2 + x3 + x4 ≥ 0,

−2x1 − 4x2 + x3 + 5x4 ≥ 0,

2x1 − 4x2 + x3 + 5x4 ≥ 0,

− 6x2 + x3 + 9x4 ≥ 0,

x4 ≥ 0.

Prepare file exvoronoi.ine:

8 4

0 0 1 0

-4 0 1 4

4 0 1 4

0 -2 1 1

-2 -4 1 5

2 -4 1 5

0 -6 1 9

0 0 0 1

Now evoke Skeleton:

skeleton exvoronoi.ine --ineinc --extinc

We get the following file exvoronoi.ine.out:

* Basis:

0 4

* Extreme rays:

10 4

24

0 -1 0 0

1 1 6 0

2 1 8 0

-1 1 6 0

-2 1 8 0

-2 1 0 2

2 1 0 2

0 2 3 1

-7 5 4 6

7 5 4 6

* Edges:

16

1 3

1 5

1 6

1 7

2 3

2 4

2 8

3 10

4 5

4 8

5 9

6 7

6 9

7 10

8 9

8 10

* Inequalities-to-rays incidence:

1: 1 6 7

2: 1 3 7 10

3: 1 5 6 9

4: 6 7 8 9 10

5: 2 3 8 10

6: 4 5 8 9

7: 2 4 8

8: 1 2 3 4 5

* Rays-to-inequalities incidence:

1: 1 2 3 8

2: 5 7 8

3: 2 5 8

4: 6 7 8

5: 3 6 8

6: 1 3 4

7: 1 2 4

8: 4 5 6 7

25

b bb

b

bb

b

v1 v1

v2

v3

v4

v5

bc bc

bcbc

bc

v6 v7

v8

v9 v10

Figure 4: Voronoi diagram constructed with the help of Skeleton

9: 3 4 6

10: 2 4 5

Each extreme ray with last entry equal to 0 corresponds to a Voronoi ray.
Each ray whose last entry is non-zero corresponds to a Voronoi vertex. So, we
get 5 Voronoi rays (ignoring the third component):

v1 = (0,−1)>, v2 = (1, 1)>, v3 = (2, 1)>, v4 = (−1, 1)>, v5 = (−2, 1)>.

and 5 Voronoi vertices (dividing by the forth component and ignoring the third
one):

v6 =

(

−1,
1

2

)>

, v7 =

(

1,
1

2

)>

, v8 = (0, 2)>,

v9 =

(

−
7

6
,

5

6

)>

, v10 =

(

7

6
,

5

6

)>

.

Interpreting “Edges” or/and “Inequalities-to-rays incidence” we get Fig. 4.

7.6 Delaunay Triangulation

Let W be a system of s points in Rd and v be some Voronoi vertex for W .
The convex hull of the nearest neighbor set of v is called the Delaunay cell of
v. The Delaunay complex (or triangulation) of W is a partition of Conv W into
the Delaunay cells of Voronoi vertices.

The Delaunay complex is not in general a triangulation but becomes a tri-
angulation when the points in W are in general position (or nondegenerate), i.e.
no d + 2 points are cospherical or equivalently there is no point c ∈ Rd whose
nearest neighbor set has more than d + 1 elements.

26

b bb

b

bb

b

w1

w2w3

w4

w5w6

w7

bc bc

bcbc

bc

Figure 5: Delaunay triangulation is dual to Voronoi diagram

The Delaunay complex is dual to the Voronoi diagram in the sense that
there is a natural bijection between the two complexes which reverses the face
inclusions (see Fig. 5) [Fuk04].

So, to generate Delaunay triangulation we can perform the following pro-
cedure. For each vertex of polyhedra (we are not interesting in extreme rays)
in previous section we determine all facets incident to the vertex. Interpreting
information about “Rays-to-inequalities incidence” in exvoronoi.ine.out we
get that Delaunay cells in this example are formed by the following vertices w1,
w3, w4; w1, w2, w4; w2, w4, w5; w3, w4, w6; w4, w5, w6, w7 (see Fig. 5).

There is a direct way to construct the Delaunay triangulation. Consider the
same paraboloid as in the previous section: xd+1 = x2

1 + . . .+x2
d. For each point

w = (w1, . . . , wd)
> in W consider its lifting (w1, . . . , wd, w

2
1 + . . .+w2

d)
> in Rd+1

and take the convex hull P of all such lifted points. Let v = (0, . . . , 0, 1). It turns
out that any facet of P + NonNeg(v) which is not parallel to v is a Delaunay
cell once its last coordinate is ignored, and any Delaunay cell is represented this
way [Fuk04].

For our example form the file exdelaunay.ext:

8 4

0 0 0 1

2 0 4 1

-2 0 4 1

0 1 1 1

1 2 5 1

-1 2 5 1

0 3 9 1

0 0 1 0

and evoke Skeleton:

skeleton exdelaunay.ext --extinc

27

We get the file exdelaunay.ext.out:

* Basis:

0 4

* Extreme rays:

10 4

0 1 0 0

-1 -1 0 3

-2 -1 0 4

1 -1 0 3

2 -1 0 4

2 -1 1 0

-2 -1 1 0

0 -4 1 3

7 -5 3 2

-7 -5 3 2

* Rays-to-inequalities incidence:

1: 1 2 3 8

2: 5 7 8

3: 2 5 8

4: 6 7 8

5: 3 6 8

6: 1 3 4

7: 1 2 4

8: 4 5 6 7

9: 3 4 6

10: 2 4 5

Only first 5 facets are not parallel to v (because their 3rd coordinate is non-
zero). So, we again have 5 Delaunay cells which are formed by points w1, w3,
w4; w1, w2, w4; w4, w5, w6, w7; w3, w4, w6; w2, w4, w5 correspondingly (see
Fig. 5).

References

[Ara09] Arageli: a library for doing exact computation.
http://www.arageli.org, 2006-2009.

[Avi] D. Avis. lrs homepage. http://cgm.cs.mcgill.ca/ avis/C/lrs.html.

[Bur56] E. Burger. Über homogene lineare ungleichungssysteme. Zeitschrift

für Angewandte Mathematik und Mechanik, 36:135–139, 1956.

[Che64] N.V. Chernikova. Algorithm for finding a general formula for the
non-negative solutions of system of linear equations. U.S.S.R. Com-

putational Mathematics and Mathematical Physics, 4(4):151–158,
1964.

28

[Che65] N.V. Chernikova. Algorithm for finding a general formula for the
non-negative solutions of system of linear inequalities. U.S.S.R.

Computational Mathematics and Mathematical Physics, 5(2):228–
233, 1965.

[Che68a] S.N. Chernikov. Linear inequalities. Nauka, Moscow, 1968. Russian.

[Che68b] N.V. Chernikova. Algorithm for discovering the set of all solutions
of a linear programming problem. U.S.S.R. Computational Mathe-

matics and Mathematical Physics, 8(6):282–293, 1968.

[FP96] K. Fukuda and A. Prodon. Double description method revis-
ited. In M. Deza, R. Euler, and I. Manoussakis, editors, Lecture

Notes in Computer Science, volume 1120, pages 91–111. Springer-
Verlag, 1996. ps file available from ftp.ifor.math.ethz.ch, directory
/pub/fukuda/reports.

[FQ88] F. Fernández and P. Quinton. Extension of Chernikova’s algorithm
for solving general mixed linear programming problems. Technical
report, IRISA, Rennes, France, 1988.

[Fuk02] K. Fukuda. cdd, cddplus and cddlib homepage.
http://www.cs.mcgill.ca/ fukuda/software/cdd home/cdd.html,
2002.

[Fuk04] K. Fukuda. Frequently asked questions in polyhedral computation.
http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html,
2004.

[Gru03] D.V. Gruzdev. Experimental comparison of algorithms for con-
structing convex hulls and triangulations. In O.B. Lupanov, editor,
Proceeding of the XIV International Workshop “Synthesys and Com-

plexity of Control Systems, pages 24–26, Nizhni Novgorod, 2003.
Nizhni Novgorod Pedagogical University. Russian.

[MRTT53] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The
double description method. In H.W. Kuhn and A.W.Tucker, editors,
Contributions to Theory of Games, volume 2, Princeton, RI, 1953.
Princeton University Press.

[SC97] V.N. Shevchenko and A.Yu. Chirkov. On complexity of constructing
the skeleton of the cone. In X Russian conference “Mathematical

programming and applications”, page 237, Ekaterinburgh, 1997. Ural
department of Russian Academy of Science. Russian.

[SG03] V.N. Shevchenko and D.V. Gruzdev. Modification of Fourie–
Motzkin algorithm for constructing triangulations. Discrete Analisys

and Operations Research, Series 2, 10(10):53–64, 2003. Russian.

29

[Ver92] H.Le. Verge. A note on Chernikova’s algorithm. Technical Report
635, IRISA, Campus de Beaulieu, Rennes, France, 1992.

[VPS84] S.I. Veselov, I.E. Parubochĭı, and V.N. Shevchenko. A program for
finding the skeleton of the cone of nonnegative solutions of a system
of linear inequalities. In Systems and Applied Programs. Part 2,
pages 83–92, Gorky, 1984. Gorky State University. Russian.

[Zol97] N.Yu. Zolotykh. Program implementation of Motzkin–Bürger algo-
rithm for finding the skeleton of a polyhedral cone and its applica-
tions. In M.A. Antonets, V.E. Alekseyev, and V.N. Shevchenko, edi-
tors, Proceeding of the 2nd International Conference “Mathematical

Algorithms”, pages 72–74, Nizhni Novgorod, 1997. Nizhni Novgorod
State University. Russian.

30

