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Abstract

This paper describes SKELETON: implementation of several new vari-
ations of well-known Double Description Method (DDM) for solving the
vertex and facet enumeration problems for convex polyhedra. New en-
hancements makes SKELETON quite competitive in comparison with other
implementations of DDM. The source code of SKELETON 02.00.04 is avail-
able at http://www.uic.nnov.ru/"zny/skeleton.
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1 What’s new?

SKELETON 02.00.00 May 7, 2006
It is new, completely re-written, fast version of SKELETON.

SKELETON 02.00.01 November 1, 2006
SKELETON now runs on Linux platform. Source code is available.

SKELETON 02.00.02 November 7, 2006
Floating point arithmetic is now supported.

SKELETON 02.00.03 May 30, 2007
Time bug fixed. Vertices of 3d polyhedra are in clockwise or anticlockwise
direction.

SKELETON 02.00.04 October 6, 2009
A bug occuring on 64 bit architecture fixed. (Thanks to Sergey Lyalin
and Sergey Lobanov.)

2 Introduction

It is well known that any polyhedon in R¢ can be represented by the following
two ways:

(1) as a set of solutions to the system of linear inequalities, or

(2) as the (Minkowski’s) sum of the conic hull of some vectors and the convex
hull of some points in RY.

The problem to generate representation (2) if representation (1) is available
is called the vertex enumeration problem. The converse one is called the facet
enumeration problem, or convex hull problem.

Analogously, any polyhedral cone in R? can be represented by the following
two ways:

(1) as a set of solutions to the system of homogenius linear inequalities, or
(2) as a set of all non-negative linear combinations of some vectors in R%.

There is a standard way to reduce vertex/facet enumeration problem for
polyhedra to the correspondent problem for polyhedral cones. From theoretical
point of view it is convenient to consider both problems just for polyhedral
cones.

The program SKELETON implements several variations of Double Description
Method (DDM) [MRTT53] solving the vertex and facet enumeration problems.
DDM is considered in a few papers and monographs [Bur56, Che64, Che65,
Che68a, VPS84, Che68b, FQ88, Ver92, FP96, SC97, SG03].

SKELETON works with the system of linear inequalities whose entries are
integers (arbitrary precision or 4 bytes long ints) or reals (double floating point
numbers).



In our implementation we use ideas descibed in [VPS84, FP96, SC97] and
some new enhancements. All these makes SKELETON quite competitive in
comparison with other implementations of DDM, in particular, [Ver92, Fuk02,
Gru03]. Early version of SKELETON is described in [Zol97].

SKELETON can be distributed under the terms of GNU GENERAL PUBLIC
LICENSE Version 2. Read file COPYING.

Thanks to Sergey Lobanov you can use Skeleton on-line (withput install it).
Visit http://www.arageli.org.

3 Theoretical Preliminaries

3.1 Polyhedral Cones

Polyhedral cone C' is the set of all solutions to a system of homogenius linear
inequalities and equations Az > 0, Bx = 0:

C:{xERd:AxZO,BxZO}, (%)

where A € R™*? B € R**? (m or/and t may be equal to 0 that corresponds to
the case when inequalities or/and equations are absent accordingly). The case
of system of equations and inequalities can be obviously reduced to the case
of system with only inequalities. For this instead of Bx = 0 we can consider
Bz > 0 and —Bxz > 0. But it will be more convinient to consider the more
general case.

The maximal subspace contained in the cone C can be described as a set of
all solutions to the system Ax = 0, Bx = 0. The dimension of this subspace is
equal to d — rank(A", BT). The cone is called pointed if it contains only zero
subspace, that’s equivalent to rank(A"T, BT) = d.

Let a € R%, a # 0. The hyper-plane {x ceR¢: ar= 0} is called supporting
for the cone C if C C {z: az >0} or C C {z: azx < 0}. The intersection of
the cone with a supporting hyper-plain is called its face.

Consider the system of vectors uq, ..., u, in R<. The linear hull Lin(uq, ..., up)
of the system is the set of all linear combinations of these vectors:

Lin(ug,...,up) ={Mur+... +Xpup: R (i=1,...,p)}.

The non-negative, or conic, hull NonNeg(u1, ..., u,) of the system is the set of
all non-negative linear combinations:

NonNeg(ui,...,up) ={Mur+...+Xpup: M eR, \; >0 (G =1,...,p)}.

Theorem 1 (Minkowski) For any polyhedral cone C in RY there exist vectors
ULy vy Up, Viye..,Ug 0 R¢ such that

C = Lin(uy, ..., up) + NonNeg(v1, ..., vq). (%)



Obviously, w.l.g. in Minkowski’s theorem we can omit Lin(uq, ..., up) item
and instead of (xx) write simply C' = NonNeg(v1,...,vq).

Using matrix notation we can re-formulate Minkowski’s theorem as follows.
For any matrices A € R™*¢ and B € R'*? there exist matrices V € R9*? and
U € RP*? such that

{meRd: Az >0, Bt =0} ={o=pV +XU: peR", p>0, Ae R°}.

Vectors uq, . .., up, v1,...,0, (equvalently, matrices U and V') can be chosen
in such a way that the following properties of minimality hold:

l.p =d—rank(A",B") and Lin(u1,...,u,) is the maximal subspace L
included in C (so, the system w1, ..., u, is a basis of L); and

2. ¢ is minimal among all possible ¢ such that (%) holds (this means also
that the system v, ..., v, is irreducible); in this case the system vy, ..., vq
is called a skeleton of the cone C.

The vectors in a skeleton are unique up to any positive multiplyer and any item
in L. If the cone C is pointed, i.e. tank(AT,BT) = d and, hence, p = 0, then
V1,...,0q (and — up to positive multiplyer — only they) are extreme rays of C.
We'll say that two vectors in a skeleton are adjacent if minimal face containing
both does not contain any other vector in the skeleton.

The converse theorem to Minkowski’s one is correct and is known as Weyl’s
theorem.

Theorem 2 (Weyl) For any vectors ui,...,up, vi,...,v, in R? there exist
matrices A € R™*?% and B € R™? such that

Lin(uy, . .., up) + NonNeg(vy,...,vy) = {z € RY: Az >0, Bx = 0}.

Obviously, w.l.g. in Weyl’s theorem we can omit linear equations Bx = 0
and simply write Lin(u, .. .,up) + NonNeg(v1,...,vy) = {z € R*: Az > 0}.

Using matrix notation we can re-formulate Weyl’s theorem as follows. For
any matrices U € RP*X? and V € R9%? there exist matrices A € R™*¢ and
B € R** such that

{z=XU+pV: NeRP, ueRY, uZO}z{xERd: Az >0, Bz =0}.

Matrices A and B can be chosen in such a way that the following properties
of minimality hold:

1. t =d—rank{us,...,up,v1,...,v4} and {z : Bz = 0} is the minimal sub-
space containing C' (this means also that the system Bz = 0 is irreducible);
and

2. m is minimal among all possible m such that (x) holds (this means also
that the system Az > 0 is irreducible).



The rows in such a matrix A are unique up to any positive multiplyer and any
item which is linear combinations of rows in B. The rows in A correspond to
faces of maximum dimension. In particular, if the cone C' is full-dimensional,
ie. rank{ui,...,up,v1,...,v4} = d and, hence, t = 0, then the rows in A
correspond to facets of C.

These theorems suggest two fundamental problems. First one is to obtain a
dual representation (%*) if a representation (x) is known. The second problem
is converse. It turns out that these problems are computationaly equivalent as
the following theorem shows. So, we can concentate on the first problem.

Theorem 3 (Farkas—Minkowski—Weyl) If

C:{xERd: Az >0, Bt =0} ={e=pV+ AU : peR, p>0, A€ RP}
then

C'={zeR*: Vo >0, Uz=0}={z=pA+AB: peR™, >0, N\eR'}.

Moreover, if rows in V and U form a skeleton of C' and a basis of mini-
mal subspace correspondingly, then Vx > 0, Ux = 0 are irreducible systems
determining C’ and viceversa. Analogous property is true for A and B.

3.2 Polyhedra

Polyhedron P is the set of all solutions to a system of linear inequalities and
equations Az > b, Bx = c:

P={zeR’: Az >b, Bx=c}, (%)

where A € R™*4 B € R4 b € R™, ¢c € R! (m or/and t may be equal to
0 that corresponds to the case when inequalities or/and equations are absent
accordingly). The case of system of equations and inequalities can be obvi-
ously reduced to the case of system with only inequalities. But it will be more
convinient to consider the more general case.

Let a € R a # 0, a € R. The hyper-plane {x eR?: ar = a} is called
supporting for the polyhedron P if PN{z: ax =a} #Qand P C {z: azx > a}
or P C {x: ax < a}. The intersection of the polyhedron with a supporting
hyper-plane is called a face of the polyhedron. The face whith dimension 0 (i.e.
a point) is called a vertez of P.

Consider the system of vectors wy, . . ., w, in R?. The convex hull Conv(wy, . .., ws)
of the system is the set of all convex combinations of these vectors, i.e.:

Conv(wl,...7ws):{Alwl—i—...—i—)\swsz XN ER, A\ >0, Z)\lzl}
=1

The set of points in R? which can be represented as a convex hull of some finite
system of points is called polytope.
From Minkowski’s theorem we get the following.



Theorem 4 For any polyhedron P in R® there exist vectorsuy, . . . yUp, U1y e vy Ugs
wi, ..., ws in RY such that

P = Lin(uq, . ..,up) + NonNeg(vy, ..., vq) + Conv(wy, ..., ws). (%)

So, any polyhedron is the sum of a cone and a polytope.

Obviously, w.l.g. in the theorem we can omit Lin(uq,...,u,) item and in-
stead of (sx*) write simply P = NonNeg(v1,...,vq) + Conv(wi, ..., ws).
Vectors ui,...,up, v1,...,0, Wi,...,Ws can be chosen in such a way that

the following properties of minimality hold:

1. uq,...,up is a basis of the subspace L associated with the maximal linear
variety in P; and

2. g and s are minimal among all possible ¢ and s such that (xx) holds (this
means also that the systems v1,...,v4 and w1, ..., ws are irreducible).

In this case vectors wy, ..., ws are unique up to any item in L; vectors vy, ..., V4
are unique up to any positive multiplyer and any item in L. If p = 0 then points
wi,...,ws (and only they) are vertices of P and vectors v1,...,v, (and only
they) are extreme rays of P.

The problem of constructing the representation (xx) if representation (x) is
available is called the wertexr enumeration problem. It can be reduced to the
analogous problem for cones as follows.

Consider the cone in R4+!

C= {(xl, e ,xn,an)T e R™ . Az > brny1, Br = ctpq1, Tngp1 > 0},
where = (x1,...,2,)". For the cone C we can get a dual representation
C =Lin(@,...,q,) + NonNeg(t1, . .., Tq)

for some vectors 1, ..., Ty, U1, . ..,7, in R

Let @; = (us, ipy1) (i =1,...,p), Ty = (vi,vin+1) (i =1,...,q). Since the
system of homogenius linear inequalities and equations contains the inequality
Tpt1 > 0, then it is clear that u;,41 =0 (¢ = 1,...,p). Suppose w.l.g. that
Ving1 =00 =1,...,8), vint1 #Z0 (i =s+1,...,9). Now it is not hard to see
that the initial polyhedron P has the following dual representation:

P = Lin(ug, ..., up)+

1 1
+ NonNeg(vy, ..., vs) + Conv <7-U3+1,..., -vq> .
VUs41,d+1 Vgq,d+1
Moreover, if the system %i,...,%, is a basis of the maximal linear subspace
in C' and the system v1,...,7, is a skeleton of C' then the system of vectors
constructed to describe P also has the property of minimality. In particular, if
1 .
p=0then —— - v441,..., - vq are vertices of P.
Vs+1,d+1 Vq,d+1

From Weyl’s theorem we get the following.



Theorem 5 For any vectors ui,...,Up, Vi, ...,Vq, Wi,...,Ws, N RY there ex-
ist matrices A € R™*% and B € R**% and vectors b € R,,, ¢ € R such that

Lin(uq, . .., up) + NonNeg(vy, ..., vq) + Conv(wy, ..., ws) =
:{xERd: Az > b, Bx:c}.

Matrices A and B can be chosen in such a way that the following properties
of minimality hold:

1. the system Bz = c is irreducible and {z : Bx = ¢} is the minimal linear
variety containing P; and

2. m is minimal among all possible m such that (x) holds (this means also
that the system Az > 0 is irreducible).

In this case the rows in the matrix (A,b) correspond to faces of maximum
dimension. In particular, if P is full-dimensional, i.e.

rank {u1, ..., Up, V1, ..., Vg, W1 — Wey...,Ws—1 — Ws} =d

and, hence, ¢ = 0, then the rows in (A,b) correspond to facets of P.

The problem of constructing the representation (x) if representation (xx) is
available is called the facet enumeration problem, or the convex hull problem. It
can be reduced to the analogous problem for cones as follows.

In R%*! consider the cone

C = Lin(4s, ...,q,) + NonNeg(t1, . .., T, W1, . . ., Ws),

where @, = (v;,0) (1 = 1,...,p), Ui = (v;,0) (i = 1,...,q), W; = (w;,1)
(¢=1,...,s) and find its representation

C= {(xl, e ,xd,de)T e R Az — brgr1 >0, Bx —crgeq1 = 0},

where x = (71,...,24) € R% Now it is not hard to see that the initial polyhe-
dron P has the following representation:

P:{mERd: Ax > b, Bmzc}.

Moreover, if A, B, b, ¢ are such that each of the systems Az — bxyy1 > 0 and
Bx = cxq4q is irreducible and {(xl, oy Tgyzae1) | € R Br —cxgyq = 0}
is the minimal subspace containing C' then the system of inequalities and equa-
tions constructed to describe P also has a property of minimality.

3.3 The main idea of the algorithm

Given a matrix A € R™*? DDM generates a basis of maximal subspace and
a skeleton of the cone C' = {x eR: Az > 0}. Obviously, the case then the
cone is defined by a system of linear inequalities and equations can be reduced
to the case with only inequalities.



In the preliminary step of DDM the rank r of A and a basis of the maximal
subspace containing in C' are founded. Also, a skeleton of the cone determined
by some irreducible subsystem containing r inequalities is generated. Then,
other inequalities are added one after the other and every time the skeleton is
re-conctructed. Consider this slightly in detail.

Let K be a cone determined by some subsystem of Az > 0. Suppose that
a skeleton of K is known. Consider what will happen with the skeleton then a
new inequality az > 0 is added.

Each vector in the skeleton of K falls to one of the following sets:

1. Wy is the set of all vectors w in the skeleton such that aw = 0;
2. Wy is the set of all vectors w in the skeleton such that aw > 0;
3. W_ is the set of all vectors w in the skeleton such that aw < 0.

A skeleton of the new cone is formed by all elements in W, and Wy and vectors
which we obtain as follows. For each pair of vectors w’ € W, and w” € W_
adjacent in K we obtain their linear combination w satisfying to equality aw = 0.
Every such w should be included to the skeleton of the new cone.

Variations of DDM differs one from another by ordering in which inequali-
ties are choose from the system, the methods used to find adjacent rays, a time
when the adjacency is computed and others [VPS84, FP96, SC97]. Checking
the adjacency seems the most time-expensive procedure in DDM and differ-
ent techniques to determine what pairs of vectors should be verifying are used
[FP96].

4 How to Install

The source code of SKELETON is available at http://uic.nnov.ru/~zny/skeleton.
The package contains a documentation and two C++ files: skeleton.cpp and
ddm.hpp.

SKELETON uses ARAGELI library [Ara09]. To compile SKELETON first of all
you should install ARAGELI. Suppose that you have ARAGELI installed on your
computer.

To compile the code in standard Linux environment you need gcc version 4.
Type

gt++ -02 skeleton.cpp -o skeleton -larageli

Files skeleton.cpp and ddm.hpp are supposed to be in the current directory.
Also, gcc must know the locations of ARAGELI include files and library.

To compile the code in Windows you can use MS Visual Studio C++ Com-
piler version 6.0 or later. Type

cl -02 skeleton.cpp arageli.lib



5 How to Use

Given a matrix A € Z™*¢, program SKELETON generates a basis of maximal
subspace and a skeleton of the cone C = {x eR*: Az > 0}.

To use SKELETON, first of all, one should prepare file with your data. This
file must contain the size and entries of matrix A. Entries of A should be integer.
Numbers are separated by spaces and blank lines. For example, if you want to
find a skeleton of the cone C' defined as a set of solution to the system

x1 >0,
— I + 23+ 24 >0,
— X9 + T3 >0,

x3 + 14 >0,

T1 + 22 + x4 >0,
— X1 — X9 —$420

then the input file (say ex00.ine) is
To run SKELETON just type in the command prompt:

skeleton filename
where filename is the name of the input file. Example:
skeleton ex00.ine

SKELETON produces two files: “output” file, “log” file and “summary”
file. By default, their names are obtained by adding extention .out, .log,
.sum respectively to input file name. In our example SKELETON produces files
ex00.ine.out, ex00.ine.log, and ex00.ine.sum.

The output file contains sizes and entries of matrix U (vectors of a basis
in row-wise order) and matrix V (vectors of a skeleton). Also, the file can
contain other information (it depends on options used; see the list of available
options below). In our example we get the following file ex00.ine.out: Thus,
we get u; = (0,—1,—-1,1)T, v; = (1,-1,1,0)T, v = (0,0,1,0)T and C =
Lin(u1) + NonNeg(vy, v2).

The log file contains computation hystory. By default, this information is
also displayed on stdcrt during computation. In our example we get the following
file ex00.1ine.log:

The summary file contains computation summary. By default, this informa-
tion are also displayed on stdcrt after computation. In our example we get the
following file ex00.ine.sum:

You may set different options affecting the process of computation and the
output of information:

skeleton filename options

where options is a list of options. Each option is an abbreviation beginning
with minus sign. Options are separated by spaces. Example:

skeleton ex00.ine -lexmin -adjacency

Complete list of available options is in the next section.



6 Options

The following options are available (the default parameters are in braces):

{—minindex}7 -lexmin, -lexmax, -random, -mincutoff, -maxcutoff, -minedges,
-maxedges
These options affect the ordering of inequalities to be added at each
iteration of DDM.

-prefixedorder, -noprefixedorder
If options -mincutoff -maxcutoff -minedges -maxedges are chosen
then only -noprefixedorder is possible. In other cases both options
are available; the default one is -prefixedorder.

{-graphinc}, -nographinc
These affect the way of determining adjacent vectors.

{-plusplus}, -noplusplus
If option -plusplus is chosen then only the pairs of adjacent vectors
that will be necessary on the future iterations are constructed. If option
-noplusplus is chosen then all edges are constructed on each iteration.

{-bigint}, -int, -float
By default, arbitrary precision integer arithmetic is used. Option -int
forces to use ordinary (4 bytes) integer precision arithmetic. Option
-float forces to use double floating point (8 bytes) arithmetic.

-zerotol value
The option affects only if option -float is used. This is used to change a
zero tolerance for floating point computation. A real value is considered
as zero if its absolute value is at most the tolerance. The default value
for the zero tolerance is 1e-8.

{-adjacency}, -noadjacency
Option —adjacency forces to find also all pairs of adjacent vectors in the
skeleton.

-inputfile filename
This option defines input file name. skeleton -inputfile filename is
equivalent to skeleton -inputfile filename. By default, all input is
from stdin.

-outputfile filename
This option sets the name of output file. By default, this name is obtained
by adding extention .out to input file name. If input was from stdin then
output file is skeleton.out.

-logfile filename
This option sets the name of log file. By default, this name is obtained
by adding extention .log to input file name. If input was from stdin
then log file is skeleton.log.

-summaryfile filename
This option sets the name of summary file. By default, this name is
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obtained by adding extention .sum to input file name. If input was from
stdin then log file is skeleton.sum.

{-outputinfile}, -nooutputinfile
If -nooutputinfile is chosen then SKELETON will not put results in
output file.

-outputonstdout, {-nooutputonstdout}
If —outputonstdin is chosen then SKELETON will put results on stdout.
{-loginfile}, -nologinfile
If -nologinfile is chosen then SKELETON will not put log information
in log file.

{-logonstdout}, -nologonstdout
If -nologonstdout is chosen then SKELETON will not put log information
on stdout.

{-summaryinfile}, -nosummaryinfile
If -nosummaryinfile is chosen then SKELETON will not put summary
information in summary file.

{-summaryonstdout}, —-nosummaryonstdout
If -nosummaryonstdout is chosen then SKELETON will not put summary
information on stdout.

-ine, {-noine}
If -ine is chosen then SKELETON will put the input matrix A on std-
out and in outputfile. This works only if option -outputinfile or
-outputonstdout correspondingly turns on.

{-bas}, -nobas
If -nobas is chosen then SKELETON will not put the matrix U (with
entries of basis of maximal subspace contained in the cone) on std-
out and in outputfile. This works only if option -outputinfile or
-outputonstdout correspondingly turns on.

{-ext}, -noext
If -noext is chosen then SKELETON will not put the matrix V (with
entries of skeleton vectors) on stdout and in outputfile. This works only
if option —outputinfile or —outputonstdout correspondingly turns on.
-inc, {-noinc}
If -inc is chosen then SKELETON will put the matrix VAT on std-
out and in outputfile. This works only if option -outputinfile or
-outputonstdout correspondingly turns on.

-incext, {-noincext}
If -incext is chosen then for each vector in skeleton the program will
print (on stdout and in outputfile) iniqualities which hold as equality.
This works only if option -outputinfile or -outputonstdout corre-
spondingly turns on.

-incine, {-noincine}
If ~incine is chosen then for each inequality in the initial system the
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program will print (on stdout and in outputfile) vectors in the skeleton
for which the inequality holds as equality. This works only if option
-outputinfile or -outputonstdout correspondingly turns on.

-matrices, -nomatrices
-matrices is equivalent to -ine, -ext, -bas, -inc; -nomatrices is
equivalent to -noine, -noext, -nobas, -noinc. This works only if option
-outputinfile or -outputonstdout turns on.

{-summary}, -nosummary
If -nosummary is chosen no summary information (input/output/log file
names, sizes of matrices and option values) will not put on stdout and in
summary file. This works only if option ~summaryinfile or ~summaryonstdout
turns on.

{-time}, -notime
If -notime is chosen no time information (the time of beginning and
ending of computation and complete time elapsed) will not put on std-
out and in summary file. This works only if option -summaryinfile or
-summaryonstdout turns on.

-help or —-help
skeleton -help prints the list of available options and terminates the
program. skeleton --help does the same.

-version or --version
skeleton -version prints SKELETON version and terminates the pro-
gram. skeleton --version does the same.

7 More Examples

7.1 Cube With a Cutted Vertex
Consider the polyhedron described by the following system:

x1 >0,
T2 >0,
z3 > 0,

X S 17 (1)
T2 <1,
z3 <1,
2x1 + 229 + 223 < 5.

It is a cube with a “cutted” vertex (see Fig.1).
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Figure 1: Cube with a cutted vertex. Facet representation
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Figure 2: Cube with a cutted vertex. Vertex representation
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The corresponding cone is described by the following homogenious system:

1 Z 0;

T2 >0,

3 >0,

-1 + x4 >0,
— g + x4 >0, (2)

— x3+ x4 20,

—2x1 — 2x9 — 223 + by > 0,

T4 Z 0

(setting x4 = 1 we get the initial system). So, input file (named cwcv.ine) is

8 4
01 0 O
0 0 1 O
0 0 0 1
1-1 0 O
1 0-1 0
1 0 0-1
5 -2 -2 -2
1 0 0 O

Running SKELETON with
skeleton cwcv.ine -adjacency -incine

we get the following file cwcv.ine.out:

* Basis:
04

* Extreme rays:
10 4
1100
1110
2221
1101
2212
1001
1011
2122
1010
1000

Matrix with entries of the basis is empty (it contains 0 rows), hence the
polyhedron does not contain any non-zero linear variety. Matrix with entries
of the skeleton has 10 rows, hence the polyhedron has 10 vertex (see Fig.2).
The forth coordinate corresponds to the denominator in entries of all these
vertices. They are vy = (1,0,0)7, v = (0,0,0)T, v3 = (1,1,0), vy = (0,1,0) T,
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U5 = (15071) , Ve = (07051) , U1 = (071)1) , U8 = (17155) , Vg = (15571) )
1 T
V10 = (5, 1, 1) .

Also, we have computed all pairs of adjacent vertices. The polyhedron has
15 edges. They are vi—va, v1—v3, V1—V5, Va—U4, Va—Vg, U3—V4, V3—Vg, V4—V7, U5—Vg,
Us—Vg, V6~ V7, U7~ V10, V8~ V9, V8~ V10, V9~ V10-

Information concerning “Inequalities Incidence” tell us that 7 facets are
formed by vertices vy, v4, vg, U7; V1, U2, Us, Vg; V1, V2, U3, V4; V1, U3, Us,
s, Vg; U3, V4, V7, Us, V10; Us, Vs, U7, Vg, V10; Us, Vg, U1 correspondingly.

Now we can check our computations by “reversing” them. Form the input file
(named cwcv.ext) containing entries of vertices found: and evoke SKELETON:

skeleton cwcv.ext

We get the following file cwcv.ext.out: Since the matrix with “basis” is empty
the polyhedron has full dimension. The matrix with “skeleton” has 7 rows. They
correspond to exactly the same inequalities as in (1), so the polyhedron has 7
facets. We remark that in the list obtained there is no row corresponding to the
inequality x4 > 0 because in our case it is redundant in (2).

7.2 Voronoi Diagram

Let W be a system of s points in R%. For each w € W we can consider the set
VS(w) = {z € Re: Vo e W\ {w} dist(z,p) < dist(z,q)}

where dist is the Euclidean distance function. The set VS(w) is called a Voronoi
cell. It is a polyhedron. Its vertices are called Voronoi vertices and extreme rays
are called Voronoi rays. The set {VS(w) : w € W} of all Voronoi cells is called
Voronoi diagram (see Fig.3). For generating Voronoi diagram the following
construction is widely used.

For each w € W consider the hyperplane tangent at w = (w1, ...,wg)" to
the paraboloid {(z1,...,%4, %a41) : Tay1 = 27 + ...+ x3}. This hyperplane is
represented by the following equation:

—2w1 Ty — ... — 2WaTq + Tap1 + W+ ..+ wi=0.

Replacing the equality with inequality > and considering these inequalities for
each w € W we get the system of s linear inequalities. Let P be the polyhedron
of all solutions to the system. It turns out that P is a lifting of Voronoi diagram
to one higher dimensional space; and the projection of each facet of P associated
with w is exactly the Voronoi cell VS(w). The vertices and extreme rays of P
project exactly to the Voronoi vertices and rays, respectively [Fuk04].

As an example consider the set of points (0,0)7, (2,0)7, (=2,0)T, (0,1)T,
(1,2)T, (-=1,2)T, (0,3)T. For generating their Voronoi diagram consider the
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Figure 3: Voronoi diagram for the set of points

system
+ x3 >0,
—4xq + x3 + 4z4 > 0,
4xq + x3 + 4z4 > 0,

— 229 + a3+ x4 >0,
—2x1 — 4x9 + 3 + Sy > 0,
2x1 — 4dxo + x3 + dx4 > 0,
— 6x2 + x3 + 924 > 0,
x420

Prepare file exvoronoi.ine: Now evoke SKELETON:
skeleton exvoronoi.ine -incine -incext

We get the following file exvoronoi.ine.out:

Each row in “skeleton” with last entry equal to 0 corresponds to a Voronoi
ray. Each row whose last entry is non-zero corresponds to a Voronoi vertex.
So, we get 5 vertices of Voronoi diagram (dividing by the forth component and
ignoring the third one):

v——ll—l—v—ll—rv—Z§—r
1= "9 72_72 73_676 )

T
75

V4 = <_6; 6) ) Us = (07 2)Ta
and 5 extreme rays (ignoring the third component):

ve=(0,—1)", vr=(2,1)", vg=(=2,1)T, wg = (1, 1) 7, vyo = (-1,1)".

Interpret “Inequalities Incidence” we get Fig. 4.
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Figure 5: Delaunay triangulation is dual to Voronoi diagram

7.3 Delaunay Triangulation

Let W be a system of s points in R? and v be some Voronoi vertex for W.
The convex hull of the nearest neighbor set of v is called the Delaunay cell of
v. The Delaunay complez (or triangulation) of W is a partition of Conv W into
the Delaunay cells of Voronoi vertices.

The Delaunay complex is not in general a triangulation but becomes a tri-
angulation when the points in W are in general position (or nondegenerate), i.e.
no d + 2 points are cospherical or equivalently there is no point ¢ € R¢ whose
nearest neighbor set has more than d + 1 elements.

The Delaunay complex is dual to the Voronoi diagram in the sense that
there is a natural bijection between the two complexes which reverses the face
inclusions (see Fig.5) [Fuk04].
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So, to generate Delaunay triangulation we can perform the following pro-
cedure. For each vertex of polyhedra (we are not interesting in extreme rays)
in previous section we determine all facets incident to the vertex. Interpreting
information about “Skeleton Incidence” in exvoronoi.ine.out we get that De-
launay cells in this example are formed by the following vertices wy, ws, wyg; w1,
Wa, Wq; Wa, Wy, Ws; Ws, Wy, We; We, Wy, We, Wy (see Fig.5).

There is a direct way to construct the Delaunay triangulation. Consider the
same paraboloid as in the previous section: zgz41 = x% +.. .+a:3. For each point
w = (w1,...,wq) " in W consider its lifting (w1, ..., wq, w? +...+w2)" in RIF!
and take the convex hull P of all such lifted points. Let v = (0,...,0,1). It turns
out that any facet of P + NonNeg(v) which is not parallel to v is a Delaunay
cell once its last coordinate is ignored, and any Delaunay cell is represented this
way [Fuk04].

For our example form the file exdelaunay.ext: and evoke SKELETON:

skeleton exdelaunay.ext -incext

We get the file exdelaunay.ext.out: Only first 5 facets are not parallel to
v (because their last coordinates are non-zero). So, we again have 5 Delaunay
cells which are formed by points wy, w3, wa; wi, wa, wy; we, Wy, Ws; W3, Wy,
we; Wyq, W5, We, wy correspondingly (see Fig.5).
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