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INTRODUCTION

It is well known that each polyhedron in �
d
 can be represented in either of the following two ways:

(i) as the solution set of a system of linear inequalities;

(ii) as the sum (in the sense of Minkowski) of the conical hull of a set of vectors u1, u2, …, un and the

convex hull of a set of points v1, v2, …, vk in �
d
.

If the polyhedron is a solid figure, then the irreducible system of linear inequalities for it is uniquely
defined up to the multiplication of each inequality by positive constants, and each inequality is associated
with a facet (i.e., a face of maximum dimension). If the polyhedron does not contain nonzero affine sub�
spaces, then the irreducible generating sets of vectors u1, u2, …, un and points v1, v2, …, vk are uniquely
determined up to the multiplication of u1, u2, …, un by positive scalars. Here, v1, v2, …, vk are the vertices
of the polyhedron and u1, u2, …, un are its extreme recession rays. Given representation (i), the construc�
tion of irreducible representation (ii) is called, loosely speaking, the problem of finding a vertex description.
The inverse problem is one of finding a facet description or the construction of a convex hull. According to
a classical theorem of Weyl, either of these two problems can be reduced to its inverse (dual) in at most
linear time.

Similarly, every polyhedral cone in �
d
 can be represented in either of the following two ways:

(i) as the solution set of a homogeneous set of linear inequalities;

(ii) as the set of all nonnegative combinations of a set of vectors in �
d
.

The skeleton of a cone is defined as an irreducible system of vectors all of whose nonnegative combina�
tions comprise that cone. If a cone is acute (i.e., contains no nonzero subspaces), then its skeleton is
uniquely defined up to the multiplication of the vectors by positive scalars and forms the set of extreme
rays of the cone.

There is a standard method for reducing the construction of a vertex/facet description for polyhedra to
the corresponding problem for polyhedral cones. For example, a vertex description of a polyhedron {x ∈

�
d
 : Ax ≥ b} can be found by solving a similar problem for the cone {(x, xd + 1) ∈ �

d + 1
 : Ax – bxd + 1 ≥ 0,

xd + 1 ≥ 0} and, then, setting xd + 1 = 1.

These problems arise in many applications, such as computer graphics, physical simulation, image
processing, cartography, computational biology, theoretical physicist, and others. The construction of a
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Delaunay triangulation and a Voronoi diagram [1] can be reduced to the construction of a facet descrip�
tion (convex hull).

At present, it is not known whether there are algorithms solving these problems in a time that is a poly�
nomial in the total length of the input and output. Moreover, none of the algorithms available has this
property [2]. On the other hand, these problems arise in many applications and fast practical algorithms
are necessary for their solution.

Below, we consider the classical double description method [3] (also known as the Motzkin–Burger
algorithm), which solves the problems in question. Various improvements of this method were proposed,
for example, in [4–13].

The double description method is “incremental,” and its underlying idea can be described as follows.
Consider the problem of constructing a vertex description of a polyhedron {x : Ax ≤ b}. First, the problem
is solved for a subsystem of the system Ax ≤ b (for example, for a single inequality or a subsystem of rank d).
Then the inequalities of the original system are added to this subsystem one after another and the vertex
description is updated each time. The name of the double description method is explained by the fact that
each iteration involves two descriptions of the current polyhedron (a vertex and a facet one), and the other
necessary information (e.g., the set of all edges of the current polyhedron) is calculated from them. Sup�
pose that the inequality ax ≤ β is added at the current iteration. The vertex set of a new polyhedron consists
of vertices of the current one whose coordinates satisfy this inequality and the intersection points of its
edges with the hyperplane ax = β.

The double description method does not update the complete lattice of faces in the current polyhe�
dron, in contrast to other incremental algorithms, such as the beneath�beyond method [1] or the
Shevchenko–Chirkov algorithm [12], and does not use triangulations, in contrast to [13–15], etc. Note
that the size of the complete lattice of faces and the size of a triangulation can depend superpolynomi�
ally on the total size of the input and output (see [2]). For this reason, the double description method
is frequently faster than other algorithms, for example, as applied to extremely degenerate problems.
(The problem of finding a vertex description is degenerate if there is a vertex incident to more than
d facets.)

A bottleneck in the method is the procedure used to find the edge set of the current polyhedron, which
is executed at every iteration step. For this purpose, a necessary and sufficient adjacency condition (test)
is usually verified for each pair of vertices. There are two well�known tests: algebraic and combinatorial.
As a rule, the combinatorial test performs much faster than the algebraic one. Below, a new accelerated
modification of the combinatorial test is proposed, which is referred to as a graph test. Another improve�
ment is associated with a decrease in the number of pairs of vertices to be tested for adjacency. It was noted
in [11] that some of the edges of the current polyhedron do not lead to the generation of new vertices at
late iterations and it was shown how the required storage and the execution time can be considerably
reduced on this basis. Below, this idea is further developed and used to modify the double description
method with a dynamic order of adding inequalities. Theoretical results and a numerical experiment show
that the modifications proposed are considerably superior in terms of speed to the original algorithm and
other modifications, for example, in [11].

To be definite, consider the construction of the skeleton of a polyhedral cone defined by the homoge�
neous system of linear inequalities Ах ≥ 0. Let the cone be acute. For an arbitrary cone, the problem can

easily be reduced to the above one by passing from the original space �
d
 to the orthogonal complement of

the subspace {x ∈ �
d
 : Ax = 0}.

The necessary definitions and notation are introduced in Section 1. The scheme for the double
description method is described in Section 2. In Section 3, we discuss several methods for adding ine�
qualities to the original system. Sections 4 and 5 deal with two important procedures in the double
description method. Specifically, in Section 4, we describe methods for verifying the adjacency of
extreme rays in a polyhedral cone and propose a new graph modification of this test. In Section 5, tech�
niques for reducing the number of generated pairs of adjacent extreme rays are presented and new solu�
tion methods for this problem are suggested. The modifications proposed have been implemented in the
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SKELETON code, which is briefly outlined in Section 6. Numerical results are also presented in this
section.

1. NOTATION AND PRELIMINARIES

The material in this section is based primarily on [7, 16]. The polyhedral cone in �
d
 (or simply a cone)

is defined as a set

where A ∈ �
m × d

 is an m × d real matrix. The system of linear inequalities Ax ≥ 0 is said to define the cone C.
A cone is called acute if it does not contain nonzero subspaces. It is well known that a cone is acute if and
only if rankA = d, where rankA denotes the rank of the matrix A. Any polyhedral cone C can be defined

as the conical hull of a finite set of vectors u1, u2, …, un in �
d
; i.e.,

The set of vectors u1, u2, …, un are said to generate the cone C.

A nonzero vector u ∈ C is said to be a ray of C. Two rays u and v are called equal (written as u � v) if
for some α > 0 it is true that u = αv. A ray u ∈ C is said to be extreme if the condition u = αv + βw for α ≥ 0,
β ≥ 0, and v, w ⊆ С implies u � v � w. The set of extreme rays of an acute cone is its minimal generating

system and is called the skeleton of the cone. Suppose that P is a convex subset of �
d
 and, for some a ∈

�
d
 and α ∈ �, it holds that P ⊆ {x : ax ≤ α}. Then P ∩ {x : ax = α} is called by a face of P. Two extreme

rays u and v of an acute cone C are said to be adjacent if the minimal face containing both rays does not
contain any other extreme rays of the cone. The skeleton of C is denoted by U(C), and the set of all pairs
{u, v} of adjacent extreme rays is denoted by E(C).

Given a matrix A ∈ �
m × d

, i ∈ {1, 2, …, m}, and K ⊆ {1, 2, …, m}, let ai denote the ith row of A and AK

denote the submatrix of A composed of the rows ai, where i ∈ K. In expressions of the form ax, where a ∈ �
d

and x ∈ �
d
, we interpret a as a row vector and x as a column vector.

2. DOUBLE DESCRIPTION METHOD

The main idea behind the double description method [3] for constructing the skeleton of a polyhedral

cone is as follows. A matrix A ∈ �
d × n

 with rankA = d is fed as input. At a preliminary stage, we find a sub�
system Bx ≥ 0 of the system Ax ≥ 0 that consists of d inequalities of rank d. It is easy to see that the skeleton
of the cone defined by this subsystem is formed of the columns of the matrix B–1. Then the inequalities of
the original system are added to the subsystem Bx ≥ 0 one after another with the skeleton updated each
time. The updating rules are given in the following theorem.

Theorem 1 (the main theorem of the double description method [3]). Let A ∈ �
m × d

, rankA = d, and

a ∈ �
d
. If U is the skeleton of the cone C = {x ∈ �

d
 : Ax ≥ 0} and

then the skeleton of the cone

C x �
d
 : Ax 0≥∈{ },=

C x α1u1 α2u2 … αnun : αi 0 i,≥+ + + 1 2 … n, , ,= ={ }.=

U0 u U : au∈ 0={ }, U+ u U : au 0>∈{ }, U– u U : au 0<∈{ },= = =

C ' x �
d
 : Ax 0 ax 0≥,≥∈{ }=
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is the union U+ ∪ U0 ∪ U
±
, where

The general scheme for the double description method is described below (see [3]). A matrix A ∈

�
m × d

 with rank A = d is fed as input to the DDM algorithm. The output is the skeleton of the cone
{x : Ax ≥ 0}.

A major feature of the double description method is that each of its iterations involves two complete
descriptions of the current cone, namely, the system of inequalities AKx ≥ 0 and its skeleton, hence, the
name.

Modifications of the double description method differ from each other, for example, in the following
parameters:

(i) the order of considering the inequalities of the original system at step (1);

(ii) the method for determining the extreme rays of the skeleton at step (2);

(iii) the moment when the rays are tested for adjacency.

Numerous experiments show that the total running time of the algorithm depends substantially on
the order in which the inequalities are considered (see, e.g., [2, 8, 11]). On the other hand, the pro�
cedure for constructing a set E of pairs of adjacent extreme rays takes much time at each iteration
step.

Tests for verifying the adjacency of extreme rays at step (2) are described in Section 4.

Various authors have proposed modifications of the algorithm in which the set E is rebuilt as soon
as the list of extreme vectors is updated (see, e.g., [8, 11]). Below is an example of such a modifica�
tion.

U
±

w au( )v av( )u : u– U+ v U– u v,( ) E C( )∈,∈,∈={ }.=

procedure DDM(A)
Find K ⊆ {1, 2, ..., m} such that |K| = d, detAK ≠ 0
Construct the skeleton U of the cone {x : AKx ≥ 0}
while K ≠ {1, 2, ..., m}

Choose i ∈ K
U+ {u ∈ U : aiu > 0}
U– {u ∈ U : aiu < 0}
U0 {u ∈ U : aiu = 0}
U

±

for each u ∈ U+

for each v ∈ U–

if u and v are adjacent in the cone {x : AKx ≥ 0}
w (aiu)v – (aiv)u
U

±
U

±
 ∪ {w}

end
end

end
U U+ ∪ U0 ∪ U

±

K K\{i}
end
return U
end

0

(1)

(2)
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3. ORDER OF ADDING INEQUALITIES

Various methods for adding inequalities of the original system in the double description method have
been proposed (see, e.g., [8, 11]). Each of them defines a rule for choosing the index k at step (1) and (1')
of the algorithms DDM and DDM.M1, respectively.

In the methods minindex, lexmin, mincutoff, and minpairs, k is specified as

kminindex = minK, klexmin = arglexmin{ai : i ∈K},

kmincutoff = argmin {|U–| : i ∈ K}, kminpairs = argmin{|U–| · |U+| : i ∈ K}, respectively.

For the methods maxindex, lexmax, maxcutoff, and maxpairs, min and lexmin in the formulas are
replaced by max and lexmax, respectively. In the method random, the index k is selected from K at random
with equal probabilities. Thus, at each iteration of the algorithm, mincutoff (maxcutoff) minimizes
(respectively, maximizes) the number of cutoff extreme rays. The method minpairs (maxpairs) minimizes
(respectively, maximizes) the number of considered potentially adjacent pairs.

The methods for adding inequalities can be divided into two groups:
(i) methods with a fixed order of inequalities;
(ii) methods with a dynamically determined order of inequalities.
In the case of (i), the order of selecting inequalities can be defined prior to the execution of iterations.

These methods include minindex, maxindex, lexmin, lexmax, and random. In this case, the inequalities
of the original system Ax ≥ 0 can be sorted beforehand and k = minK can be assumed at step (1').

In the case of (ii), k cannot be known in advance. The methods with a dynamic order include mincut�
off, maxcutoff, minpairs, and maxpairs.

Some results of an experimental comparison of these methods are presented in Section 6.

procedure DDM.M1(A)
Find K ⊆ {1, 2, ... , m} such that |K| = d, detAK ≠ 0
Construct the skeleton U of the cone {x : AKx ≥ 0}
E {{u, v} : u, v ∈ U, u ≠ v}
while K ≠ {1, 2, ..., m}

while i ∈ K
U+ {u ∈ U : aiu > 0}
U– {u ∈ U : aiu < 0}
U0 {u ∈ U : aiu = 0}
U

±

E+ {{u, v} ∈ E : u, v ∈ U+ ∪ U0}
E0

for each {u, v} ∈ E
if u ∈ U+ and v ∈ U–

w (aiu)v – (aiv)u
U

±
U

±
 ∪ {w}

E0 E0 ∪ {{u, w}}
else if u ∈ U– and v ∈ U+

w (aiv)u – (aiu)v
U

±
U

±
 ∪ {w}

E0 E0 ∪ {{v, w}}
end

end
U U+ ∪ U0 ∪ U

±

Construct the set E ''  of pairs of rays from U0,

adjacent in the cone {x ∈ �
d
 : AKx ≥ 0, Aix ≥ 0

E E+ ∪ E ' ∪ E' '
K K ∪ {i}

end
return U

end

0

0

(1)'

(3)

(4)

(2)'
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4. METHODS FOR VERIFYING THE ADJACENCY OF EXTREME RAYS

Below, we consider some well�known methods for verifying the adjacency of extreme rays of a cone and
propose a new method. The necessary and sufficient conditions for the adjacency of rays given later can
be used in the original algorithm DDM and its modification DDM.M1. Note that, at step (2') in

DDM.M1, the set of extreme rays of the cone {x ∈ �
d
: AKx ≥ 0, akx ≥ 0} that belong to U0 coincides with

the set of all extreme rays of the cone {x ∈ �
d
 : AKx ≥ 0, akx = 0}. This circumstance should be taken into

account in the verification of the adjacency tests described below.

As usual, let C = {x : Ax ≥ 0}, A ∈ �
m × d

, rankA = d, and u ∈ �
d
. Define Z(u) = {i : Aiu = 0}. Thus, Z(u)

is the index set of constraints of the original system Ax ≥ 0 that are active for the vector u.

There are two well�known tests for the adjacency of extreme rays in a cone: algebraic and combinato�
rial.

Proposition 1 (algebraic test). Let u, v ∈ U(C). Then {u, v} ∈ E(C) if and only if rankAZ(u) ∩ Z(v) = d – 2. 

Proposition 2 (combinatorial test). Let u, v ∈ U(C). Then {u, v} ∈ E(C) if and only if Z(u) ∩ Z(v) ⊂
Z(w) for any w ∈ U(C)\{u, v}.

The algebraic test is a consequence of the Minkowski theorem. The combinatorial test was first pro�
posed in [3]. Its proof can be found in [4].

The rank in the algebraic test can be calculated using well�known linear algebra algorithms, which run
in Q(md2) time. Thus, the complexity of constructing all pairs of adjacent rays by applying the algebraic
test is O(mn2d2).

Proposition 1 yields the following simple necessary condition for the adjacency of rays.

Proposition 3. If {u, v} ∈ Е(С), then Z(u) ∩ Z(v) > r – 2.

This necessary condition has been considered by many authors (see, e.g., [4, 5, 8, 10, 11]). Numerous
experiments suggest that it should be verified before the execution of any adjacency test.

Consider the combinatorial test in more detail. It states that extreme rays u and v of a cone C are adja�
cent if and only if the inequalities that are active for both rays are not both active for any other extreme ray;
in other words, the minimal face containing both u and v does not contain any other extreme rays. Due
to the last statement, the proof of the combinatorial test is obvious.

For the combinatorial test, it is convenient to define a matrix T = (tij) ∈ {0, 1}n × m, such that tij = 1 if
and only if ajui > 0, where U = {u1, u2, …, un}. Rays ui and ui' are adjacent if and only if, for any k ∈ {1,2, …,
n}\{i, i'}, there is l such that

The complexity of verifying the adjacency of two rays u and v is O(mn). Thus, the complexity of construct�
ing all pairs of adjacent rays by applying the combinatorial test is O(mn3).

We propose a new, graph modification of the combinatorial test that considerably speeds up the verifi�
cation of the adjacency of extreme rays. Let G be a simple graph, i.e., an undirected graph without loops
or multiple edges. It can be constructed from a cone C as follows. The vertex set of G is the set U of extreme
rays of C, and {u, v} forms an edge in G if and only if |Z(n) ∩ Z(v)| ≥ r – 2. The set of all edges of G is
denoted by E(G).

Proposition 4 (graph test). Let u, v ∈ U(C). Then {u, v} ∈ E(C) if and only if there is no ray w in U(C)
other than u or v such that {u, w} ∈ E(G), {v, w} ∈ E(G), and Z(u) ∩ Z(v) ⊆ Z(w).

Proof. Let u, v ∈ U(C). According to Proposition 2, {u, v} ∈ E(C) if and only if Z(u) ∩ Z(v) ⊆ Z(w) for
no w ∈ U(C). However, according to Proposition 3, this condition does not hold for any w ∈ U(C) that is
not adjacent in G to both u and v. Therefore, this condition is sufficient to be verified only for rays w such
that {u, w} ∈ E(G) and {v, w} ∈ E(G).

Note that Proposition 4 can be used to verify the adjacency of extreme rays without constructing G.
Instead, at each iteration, we can construct only a neighborhood D the current vertex u of this graph.

til ti 'l 0, kkl 1.= = =
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We obtain the algorithm Graph.Adj for finding all the pairs of adjacent extreme rays.

The skeleton U = U(C) of C is fed as input to the algorithm. For each extreme ray u, the set Z(u) is
assumed to be known. The algorithm returns the set E of all pairs of adjacent extreme rays.

The algorithm Graph.Adj also includes the verification of the necessary condition from Proposition 3.
Let δ denote the maximum of the vertex degrees in G. It is easy to see that the complexity of verifying

the adjacency of two extreme rays u and v in Graph.Adj is O(mδ). The complexity of the entire algorithm
Graph.Adj is O(n(n + δ2m)). Since δ < n, this complexity does not asymptotically exceed the upper bound
O(mn3) for the complexity of solving the given problem by applying the combinatorial test. In many prob�
lems, δ � n and Graph.Adj becomes much more superior. The numerical results presented in Section 6
confirm this superiority.

5. DECREASE IN THE NUMBER OF CONSIDERED PAIRS OF ADJACENT RAYS

When a new inequality is added, the DDM algorithm enumerates all the pairs of extreme rays u and v
such that aku · akv < 0 and then test them for adjacency. In contrast, the DDM.M1 algorithm does enu�
merate all such pairs. Instead, the list Е of only adjacent pairs of extreme rays is updated at each iteration.
Note that the memory required for storing Е can depend quadratically on the number of generated rays.
In practice, this may lead to a shortage of memory space. On the other hand, there are pairs {u, v} ∈ E
that do not lead to the generation of a new ray. The detection of such pairs of rays at early stages reduces
the required memory, since such pairs are eliminated from Е. This also reduces the running time of step (3)
and the number of iterations in loop (4). Moreover, the detection of such pair before it is tested for adja�
cency can save time needed for this verification.

First, we consider DDM.M1 with a fixed order of inequalities. Assume that the inequalities have been
sorted in the necessary order. Therefore, k = minK can be assumed at step (1)' in DDM.M1. The following
method, referred to as PlusPlus, was proposed in [11] for reducing the number of considered pairs of adja�
cent rays in DDM.M1.

Let u, v ∈ E and aku = akv = 0. Compute aiu, aiv (i = 1, 2, …, m). Note that aiu ≥ 0, aiv ≥ 0 (i = 1,
2, …, k – 1). Let, for some k' > k,

In this case, it is easy to see that {u, v} does not lead to the generation of any new extreme ray at the sub�
sequent iterations. Therefore, this pair is excluded from consideration; i.e., it is eliminated from E.

procedure Graph.Adj(U)
E
S
for each u ∈ U

D
S S ∪ {u}
for each v ∈ U\{u}

if |Z(u)\Z(v)| ≥ d – 2
D D ∪ {v}

end
end
for each v ∈ D\S

if |Z(u)\Z(v)| ≥ d – 2
if ∃ w ∈ D\{v}, Z(u)\Z(v) ⊆ Z(w)

E E ∪ {u, v}
end

end
end

end
return E

end

0
0

0

aiu 0, aiv 0, i≥> k 1 2 … k' 1, ak'u– 0, ak'v 0.< <, , ,+=
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We propose the following modification of PlusPlus for the DDM.M1 algorithm with a dynamic order
of inequalities. Let u, v ∈ E and aku = akv = 0. Compute aiu, aiv, i = 1, 2, …, m. Note that aiu ≥ 0, aiv ≥ 0,
i = 1, 2, …, k –1. Let

In this case, it is easy to see that {u, v} does not lead to the generation of any new extreme ray at the sub�
sequent iterations. Therefore, this pair is excluded from consideration; i.e., it is eliminated from E.

Let us present numerical results demonstrating the superiority of the above modifications.

aiu aiv 0, i≥⋅ k 1 2 … m., , ,+=

Table 1. Execution time of SKELETON for the problem ccc7

The order of
considering
inequalities

Modif.
PlusPlus

Modif.
Graph. Adj Time, s Total number of 

constructed rays

Total number of 
constructed pairs 
of adjacent rays

(1) (2) (3) (4) (5) (6)

lexmax

+ + 257

337803

443041
+ – 372

– + 519
14453733

– – 1302

maxindex

+ + 3010

1087966

1313076
+ – 6703

– + 4582
41591800

– – 17169

mincutoff

+ + 3615

1207557

10442749
+ – 10764

– + 4586
44135376

– – 17761

lexmin

+ + 4285

1225951

1533651
+ – 9458

– + 7961
50631122

– – 23401

maxcutoff

+ + 7566

1789770

8459167
+ – 26128

– + 9400
59093531

– – 41580

minindex

+ + 8378

1691488

2125675
+ – 19117

– + 13480
73114625

– – 58506

maxpairs

+ + 14719

2547932

12445583
+ – 54832

– + 16911
76720581

– – 82620

minpairs

+ + 15468

2180085

12468623
+ – 53931

– + 19002
76176098

– – 94830
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6. NUMERICAL EXPERIMENT

The code SKELETON (http://www.uic.unn.ru/~zny/skeleton) has been developed by the author. It
involves all the above modifications of the double description method. The code supports limited�accu�
racy integer arithmetic (with data represented as 4�byte integers), arbitrary accuracy integer arithmetic
(with integers of unlimited size), and double�precision floating�point arithmetic. S.V. Lobanov has made
to the code available through the Internet (http://www.arageli.org/skeletondemo).

The experiments were performed on an Intel Core 2 CPU 6300 1.86 GHz, 2 Gb RAM, Microsoft Win�
dows XP Professional, Version 2002, SP2 computer system with the use of the C++ MS Visual Studio
2005 compiler with the option /î2 switched off.

Table 2. Execution time of SKELETON for the problem ccp7

The order of
considering
inequalities

Modif.
PlusPlus

Modif.
Graph. Adj Time, s Total number of 

constructed rays

Total number of 
constructed pairs 
of adjacent rays

(1) (2) (3) (4) (5) (6)

lexmin

+ + 5502

1186741

1434203
+ – 11932

– + 9738
52433304

– – 37635

mincutoff

+ + 9413

1921944

14673772
+ – 26500

– + 12300
73419448

– – 50989

minindex

+ + 9589

1815547

2264908
+ – 21153

– + 16475
80150892

– – 66086

maxindex

+ + 37293

3712906

4384170
+ – 90336

– + 53458
150592933

– – 259914

lexmax

+ + 42412

4072635

4774940
+ – 105143

– + 58899
158090265

– – 287400

minpairs

+ + 60920

4131333

20266953
+ – 211875

– + 76248
152416312

– – 397073

maxcutoff

+ + 67566

5501375

28885642
+ – 259762

– + 78645
180817307

– – 422795

maxpairs

+ + 78205

5935122

30214584
+ – 302448

– + 95036
196189215

– – 507222
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Tables 1 and 2 present the results of a numerical experiment with the input specified as the skeleton of

a complete cut cone ccc7 (63 vectors in �
21

) and the vertices of a complete cut polyhedron ссс7 (64 points

in �
21

) [17]. The code computed their facet descriptions (38780 and 116764 inequalities, respectively) in
limited�accuracy integer arithmetic. The first column indicates the order of considering inequalities of the
system. The second and third columns say whether PlusPlus and Graph.Adj were used. The fourth column
gives the time (in seconds) required for the code to solve the problem. The last two columns provide the
total number of constructed extreme rays (over all iterations of the algorithm) and the total number of gen�
erated pairs of adjacent rays, respectively.

The tables show that, as a rule, the code performs considerably better with the use of Graph.Adj and
PlusPlus.

Table 3 compares the execution times of SKELETON (with Graph.Adj and PlusPlus switched on) and
the cdd code by K. Fukuda (http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html). The latter is
based on the DDM.Ml algorithm with certain modifications from [11]. The experiment was performed
for the problems described in [11] in double�precision floating�point arithmetic.

A parallel version of the algorithm and the corresponding code can be found in [18].
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