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Abstract. Exact learning of half-spaces over finite subsets of IR™ from
membership queries is considered. We describe the minimum set of la-
belled examples separating the target concept from all the other ones
of the concept class under consideration. For a domain consisting of all
integer points of some polytope we give non-trivial lower bounds on the
complexity of exact identification of half-spaces. These bounds are near
to known upper bounds.

1 Introduction

We consider the complexity of exact identification of half-spaces over the domain
M that is an arbitrary finite subset of IR™ (n is fixed). We are interested in the
model of learning with membership queries.

The main result of this paper is Theorem 9 describing the structure of the
teaching set T' of a half-space c, i. e. a subset of M such that no other half-space
agrees with ¢ on the whole T

The mentioned theorem is used to obtain the lower bound for the complexity
of identification of half-spaces over the domain {0, 1,...,k — 1}". We show that
MEMB(HS}) = 2(log™ 2 k). For n > 3 this significantly improves 2(log k) lower
bound [10] on the considered quantity. The presented result can be compared
with the following upper bound. From results of M. Yu. Moshkov in the test
theory [11] it follows that

MEMB(HS}) = O (W>
log log k
(see [8]). We remark that for any fixed n there is a learning algorithm that
requires O(log" k) membership queries and polynomial in logk running time.
This algorithm was proposed in [20, 21, 8] .

When M is the set of all integer points of some polytope we give a lower
bound for the complexity MEMB(HS(M)). We show that for any fixed n and
[ > n and for any ~ there is a polytope P C IR™ described by a system of [ linear
inequalities with integer coefficients by absolute value not exceeding « such that
MEMB(HS(P NIR")) = 2(11"/2] log" ™! ~). We remark that this bound is near
to an upper bound obtained in the threshold function deciphering formalism: an
algorithm that learns a half-space over PNZ" in time bounded polynomially in



I and log vy using O(11"/2) 1og™ vv) membership queries was proposed in [16] (n is
fixed).
Some other related results see in Sect. 6.

2 Preliminaries

Let M is an arbitrary finite non—empty subset of IR™. M is considered as an
instance space. A concept over M is a subset of M. A concept class is some non-
empty collection of concepts over M. The concept ¢ C M is called a half-space

over M if there exist real numbers ag, aq,...,a, such that
n
c= x€M|ijaj§a0 . (1)
j=1

The inequality in (1) is called a threshold inequality for c¢. Denote by HS(M) the
set of all half-spaces over M. Define HS}; = HS(E}}) where E}, = {0,1,...,k — 1}.
Each half-space over M is a concept. The class HS(M) is a concept class.

We consider the model of ezact learning [1, 10] with membership queries.
The goal of the learner is to identify an unknown target concept ¢ chosen from
a known concept class C, making membership queries (“Is z € ¢?” for some
x € M) and receiving yes/no answers. The complexity of a learning algorithm for
C' is the maximum number of queries it makes, over all possible target concepts
¢ € C. The complexity MEMB(C) of a concept class C' is the minimum learning
complexity, over all learning algorithms for this class. A set T C M is said to be
a teaching set for a concept ¢ € C with respect to the class C' if no other concept
from C agrees with c on the whole T If a teaching set is of minimum cardinality,
over all teaching sets for a concept ¢, then we call it minimum teaching set for c.
Denote by TD(¢, C) the cardinality of a minimum teaching set for a concept c.
TD(C) is maximum TD(¢, C') over all concepts ¢ in C. TD(C) is called teaching
dimension for the class C. It is clear that MEMB(C) > TD(C) (cf. [9]).

Let Conv (X) be the convex hull of X C IR"; Affdim (X) is the affine dimen-
sion of X. For a concept ¢ C M denote by Ny(c) (resp. Ni(c)) the set of vertices
of Conv (¢) (resp. Conv (M \ ¢)). Denote P,(c) = Conv N, (c) (v =0,1).

3 Auxiliary Results

We first remark that a concept ¢ over the domain M belongs to HS(M) if and
only if Py(c) N Pi(c) = 0. Indeed, the necessity is evident and the sufficiency
follows from the Separating Hyperplane Theorem (see [5]).

Associated with each half-space ¢ over M is the cone K(c) of separating
functionals @ = (ag,a1,...,an,an+1) in an (n + 2) -dimensional vector space



(13, 15]; K(c) is described by the conditions

n

> ajz; < ag for each z € ¢,

j=1

3 (2)

Y ajxj > ag+ anqq for eachz € M\ ¢ ,

j=1

Gp41 2 0.
Any solution (ag, ..., an+1) of this system, with a,; > 0, defines a threshold
inequality for ¢. The opposite is also true: the coefficients (ag,...,a,) of any

threshold inequality of ¢ satisfy the system (2) for some positive value of @, 1.
For any Ty C ¢, Ty € M \ ¢ we consider the next subsystem of (2):

n
> ajzy < ag for each z € T
j=1
- (3)
a;r; > ag + anp41 for eachz € Ty,
i=1
An41 Z 0.

Denote by K (Ty,T1) the cone consisting of its solutions. The set

1 -1 0
K*(Ty, Th) = ZM —z —s—Z)\m z | +v|[0][X>00>0
z€Ty 0 zeTy —1 1

is a cone, dual to K(Tp,T1). A cone is said to be pointed if it does not contain
non-zero subspaces.

Lemmal. For any Ty C e, Ty C M \ ¢ the cone K*(Ty,T1) is pointed.

Proof. Since 0 € K(Tp,T1), for some non-negative v and A\, (x € To UTy) we

have that 0 = > Ap-(1,—z,0)+ > A;-(—1,2,—1)+v-(0,0,1); consequently,
z€TyH zeT)

> X = >, A =wv. If v =0 then for any x € Ty U Ty it holds that A\, = 0,

z€To €T

hence K*(Ty,T}) is a pointed cone. If v # 0 then the point y = % > Ap =
x €Ty

% ZT Az, evidently, belongs to Py N P; that is impossible. a
FASYA]

Lemma 2. For any ¢ € HS(M) the dimension of K(c) is n + 2.

Proof. Tt is known [5] that the cone K has the full dimension if and only if the
dual cone K* is pointed. Since K (c) = K (¢, M \ ¢)), the assertion follows from
Lemma 1. O

Lemma 3. If Affdim M = n then for any ¢ € HS(M) the cone K(c) is pointed.



Proof. 1t is sufficient to verify that if a = (ag,a1,...,an,an+1) € K(c) and
—a € K(c) then a = 0. From the system (2) we get that in this case an+1 =0
and, consequently,

n
MCz=(z1,22,...,%n) | Zajxj = o
j=1

Since the dimension of M is n, all a; (i =0,...,n) are zeroes. a
Now the following is a consequence of the theory of linear inequalities [5, 12].

Lemmad4. If Affdim M = n then for every ¢ € HS(M)
1) the cone K(c) has a unique up to positive factors generating system (the
system of extreme rays)

{bf(\;) = (b(()Z)abgl)v7b$Z)vb5LZ-)‘rl)7 i = 17’8} ; (4)

2) there are unique sets To(c) C ¢, Ti(c) C M \ ¢ such that (2) is equivalent
to the system

n
a;x; < ag for each (z1,...,2,) € To(c) ,
j=1
n (5)
> ajx; > ag + anq1 for each (z1,...,2,) € Ti(c)
j=1
Opy1 >0

and no subsystem of (5) is equivalent to the system (2);
3) for any © = (x1,...,2y) € Ty(c) there is a subset I C {1,...,s} such that

|I| =n+ 1, the system {b) i € I} is linearly independent and

Soa; =0l (ien), Yo, >0 (6)
j=1 iel

4) for any x = (z1,...,2,) € T1(c) there is a subset I C {1,...,s} such that
|I| =n+ 1, the system {b() i € I} is linearly independent and

S vay =0+ 0L e D, S b, >0
= icl

O

There is the standard method to reduce the problem with AffdimM < n
to the case of full dimension. Let M C Q". Denote by Aff M the affine hull of
M. Suppose that Aff M = {z € R" | Az = b} for some A € Z™*". Let D be a
Smith’s normal diagonal matrix for A, the matrices P and @) are unimodular ma-
trices such that PAQ = D. Without loss of generality we can take, D = (I,;,,0)
where I, is an identity m x m matrix, 0 is a zero n x (n — m) matrix. Perform



the change of variables x = Qy mapping Z" into Z". We have that PAx = Dy
, that is, Aff M is described by the conditions y’ = Pb where y' = (y1,...,Ym)-
Thus, rewriting remaining conditions in variables y” = (Ym1,-..,Yn) We get
the problem in IR"™" with Affdim M = n —m. We remark that there exist P, Q
such that the maximal by absolute value coefficient in the new problem does not
exceed some polynomial in the maximal coefficient of the old problem (see, for
example, [12]).

4 Caracterization of Teaching Sets of Half-Spaces
Theorem 5. Let Tp C ¢, Ty € M\ c. T = To UTy is a teaching set for a
half-space ¢ if and only if (3) is equivalent to (2).

Proof. The sufficiency of the conditions is evident. We prove their necessity.
Assume that there is the solution b = (bg, b1, ...,bn,byy1) of (3) that does not
belong to K(c). By Lemma 2, we can suppose that b,; > 0. The threshold

inequality Z bjz; < by defines some concept g € HS(M). We have that b ¢

K(c), thus g ;é c. But g agrees with ¢ on T'. Hence T is not a teaching set. O
This theorem leads to

Corollary 6. LetTy C ¢, Ty € M\c, then for any ¢ € HS(M) the set T = ToUT)
is a minimum teaching set if and only if T, = T,(c) (v =0,1). O

We note that the 2nd assertion of Lemma 4 is true for any M C IR", also
when Affdim M < n. By Corollary 6, we now get

Corollary 7. For any ¢ € HS(M) there is a unique minimum teaching set. It is
contained in every teaching set of c. a

Denote by T'(c) = Ty(¢) |JT1(c) the minimum teaching set for c.
Corollary 8. (Cf. [14, 7]) For any ¢ € HS(M) it holds that T(c) C Ny(c) U
N1 (C)
Proof. It is obvious that for T, = N,(c) the system (3) is equivalent to the
system (2). The assertion of the corollary follows now from Theorem 5. O
Let Affdim M = n and ¢ € HS(M). Without loss of generality we can assume
that in (4) it holds that bi,?il > 0 for any i = 1,...,p and bﬁj)H = 0 for any
i=p+1,...,s Let a= (a1,...an),

Mo(c,a) = (Yis---,Yn) €M|Zajyj—max2ajx] ,
j=1

Mi(c,a) =< (y1,---,Yn) €M|Zajyjf min Zajxj
j=1 j=1

Denote by N, (c,a) the set of vertices of the convex hull of M, (¢, a).



Theorem 9. If Affdim M = n then for any ¢ € HS(M) it holds that

m

7(e) = |J (Nole,60) U Ny (e,50) ) = (J (No(e.0) U N (¢, )
i=1 a
in the right-hand side the union is over all a = (a1, ...,a,) € R"™ such that the

inequality
n n
e < Py
> a5 < Iggzzaaxa
j=1 j=1
s a threshold inequality for c.

Proof. First we prove the inclusion T'(c) C U (No(c b)) U Ny (c, b/(vl))) Let
y = (y1,...yn) € To(c). By the 3rd assertion of Lemma 4, thereisi e {1,...,u}

such that Z b;i)yj = bg . Since b¥) na1 > 0, the coefficients b( (j=0,1,...,n) are
j=

the coefficients of a threshold inequality for ¢ and max Z z;b; b = b( ) Tt follows
xrece i—=1

— — P
from this that y € My(c,b®). Assume that y ¢ No(c,b®), i.e. y = 3 auy@
qg=1
P —~
for some p > 1, ap > 0, Y, = 1, y # y 9D € My(c,b®D) (¢ = 1,...,p).
q=1
Then y ¢ No(c) and, by Corollary 8, y ¢ Ty(c). This contradiction shows that
y € No(c,b®). The case y € Ti(c) is proved similarly by the 4th assertion of
Lemma 4.

We now prove that U (No(c,a) UNy(c,a)) C T(c). Let a = (a1, ...,a,) € R"
and ap = rngx Z a;Tj; Z ajr; < ag is a threshold inequality for c. For any
point z € No(c a) we con51der a concept g = ¢\ {z}. Let us prove that g €
HS(M). Assume the contrary, then Py(g) () Pi(g) # 0. This means that there
are points (1), ..., z®) in ¢, points ¥, ..., 4@ in M \ g, and positive numbers
o, ... 0p, Bo,...[Bq such that

x=(21,...,Zn Za x(r)—Zﬁty ) (7)

t=0

Z o =1, Z B¢ = 1 where x € Py(9)NP1(g). It is clear that among y(*, . .., y(®)

there is a pomt z, since otherwise we obtain that Py(c) () Pi(c) # 0, that is
1mposs1ble because it holds that c 6 HS(M). Let z = y©. We have that

Z a;x; = Z a Z a;; Z Bt Z ajy(t) + Bo Z a;zj. In the last formula

the central part does not exceed ao, in the right- hand side the first addend is
greater than ag, and the second one is equal to ag. For the equality it is necessary



that ¢ =0 and ) ajxg-r) =ag (r=1,...,p). Thus, By =1, z = z. From (7) we
j=1

now obtain that z ¢ Ny(c,a), that contradicts the condition. Hence g € HS(M).
Since ¢ and g differ only at one point, we have that z € T'(c).
n
Suppose now that a = (ai,...,a,) € R", ap = min ) a;jz;. The inequal-
zEM\C j=1
n

ity > ajx; > ag is true for any point in M \ ¢ and it is false for any point in c.

j=1
For each z € N1(c,a) we define a concept g = cU {z}. The further proof is the
same one described above.

m — —
It is obvious that |J (No(c, b)) U Ny (c, b(i))> C U (No(c,a) U Ny(c,a)). The
1=1 a

last inclusion finishes the proof of the theorem. a

The example x € M is called essential for a concept ¢ € HS (M) if there is
g € HS (M) such that ¢ and g agree on M \ {z} and don’t agree at the point x.
From the last part of Theorem 9 it follows that T'(c) is exactly the set of essential
examples for c. For the case of Boolean domain EJ this is a well-known result
(see [2] and related papers referenced in [2]).

As an example of Theorem 9, consider the concept ¢ € HS(E3) defined by
the threshold inequality 20z7 + 28x9 + 35z3 < 140. Rewrite the system (5) as
Qa > 0 where a = (ag,...,a,+1)T is a column of variables and @ is a matrix
formed from the coordinates of the points of T'(¢). Let B be a matrix formed

from the entries of the vectors b(?), S = @B, I is an identity matrix. The matrix

(@s)

is represented in Table4. We have that p = 3,

No(e;bM) = {p™,pP}, Ni(e,6M) = {¢.¢*} |

NO(Ca b(2)) = {p(1)7p(2)}a Nl(ca b(2)) = {q(l)aq(S)} )

No(e,b®) = {p™,p? p@}, " Ny(e, b)) = {g}

where p() = (7,0,0), p® = (0,5,0), p©& = (0,0,4), ¢V = (4,1,1), ¢@ =
(3,3,0), ¢® = (2,0,3), b = (56,8,11,14,1), b2 = (70,10,14,17,1), b®) =
3

(140, 20, 28, 35,140). By Theorem9, T,(c) = U N,,(c,l;g)) (v = 0,1). For the
i=1
considered example in the union it suffices to retain solely 2 members. Indeed,

TQ(C) = No(C, b(g)) = No(C, b(l)) U No(C, b(2)), Tl(C) = Nl(C, b(l)) U Nl(C, b(Z))



Table 1. Example of Theorem 9

1 00 0 01(56 70140 140 105 84 80 50 36 21
01000810 20 20 151211 7 5 3
001001114 28 28 21161610 7 4
000101417 35 35 25212012 9 5
oooo0o1f11 3 0 0O0O0O0O0O
1-7000{00 0 O 003110
1050010 0 0 040011
1004002 0 0 5002601
-1411-1y00 0 3 110000
-1330-1y01 1 4 301100
-1203-1110 2 5 032010
0ooo0o01j11 3 0 00O0OO0ODO0O0

5 Bounds for the Teaching Dimension of Half-Spaces

Denote by N the set of vertices of the polytope Conv M.
Lemma10. If c =M or ¢ =0 then it holds that T(c) = N.

Proof. Assume that for ¢ = M there is a point z € N \ T(c). Consider the
concept g = M\ {z}. Since € N, it is clear that g € HS(M) and, consequently,
x € T(c). We have proved that N C T'(c). The opposite inclusion follows from
Corollary 8. For ¢ = ) the lemma can be proved by analogy. a

From Lemma 10 it follows that TD(HS}) > 2". Indeed, assume that ¢ =
E?'. By Lemma 10 we have that TD(c) = 2", hence TD(HS}) > 2". Thus, no
polynomial in n algorithm for learning half-spaces over E}' from membership
queries exists. This was originally proved in [14].

Let P be a polytope in IR"™ that can be described as an integer system of [
linear inequalities with integer coefficients whose absolute values do not exceed
~. Denote by P(n,l,v) the class of all such polytopes. For the class HS(M) with
M=PNnZ" and P € P(n,l,7) we have

Theorem 11. For every natural n > 2 and l > n there is vy such that for every
v > o there exists a polytope P € P(n,l,v) such that

MEMB(HS(M)) > TD(HS(M)) > D, 11"/2/1og" ! ~
where M = PNZ"™ and D,, is some positive quantity depending only on n.

Proof. Tt was proved in [6] (cf. [3]) that for any fixed n > 2 and [ > n, for any
sufficiently large ~ there exists a polytope P € P(n,l,v) such that the number
of vertices of Conv (P () Z") is not less than D,,1l*/2/1og" "' . The assertion to
be proved follows now from Lemma 10. a



Return to the class HS]. Denote by N(ag, a1, ...,a,) the set of all vertices
of a convex hull of solutions of the following system:

n

> T =ag ;
j=1

;>0 2;,€Z(j=1,...,n) .

In [18] S.I. Veselov got a lower bound for the mean quantity of |N(ag, a1, ..., a,)|
(see Sect. 3.5 of [15]). This leads to

Lemma 12. For every n > 2, k > 2 there are positive numbers ag,aq, ..., ay,
such that a; <k—1 (i=0,1,...,n) and

|N(ag,ai,...,an)| > Cplog" %k
where C, is some positive quantity depending only on n. a
Theorem 13. For everyn > 2 and k > 2
Cylog" %k < TD(HS}) < €', log" ' k
where C,, and C',, are some quantities depending only on n.

Proof. The lower bound was announced (without a proof) in [17]. To obtain it
we construct a concept ¢ in the following manner. Consider ag, a1, ..., a, in the
assertion of Lemma 12 as the coeflicients of a threshold inequality of c. Since
1 < a; < k—1, we have that N(ag,...,a,) € E}. From Theorem 9 it fol-
lows that T'(¢) 2 N(ao, ... ,an), hence, TD(c, HS}) > C), log" 2 k, consequently,
TD(HS}) > C,, log" * k.

The upper bound was proved by T.Hegediis [7] on the base of [13]. It is
clear that for T,, = N,(c) the system (2) is equivalent to the system (3), hence
T(c) € No(c)|J Ni(c); it is known [7] that |No(c)| + | Ni(c)| < €7, log™ ™" k where
C] is some quantity depending only on n. Thus for any concept ¢ € HSffb the
inequality TD(c) < C’, log™ " k holds. O

The lower bound in Theorem 13 gives us that MEMB(HS) > C,, log" 2 k.

6 Related Results and Open Problems

In proving the lower bound for the teaching dimension of half-spaces over E}’ we
used the fact that the quantity p in Theorem 9 is at least 1. An open problem
remains: it would be helpful to estimate from above the quantity u (we remark
that for n > 3 there are examples with x4 = 2, 3). In this way one could apparently
decrease the upper bound on TD(HS}). For instance, it is known from [17] that
TD(HS;) = 4. This result is of considerable interest because (as it was shown in
[4, 19])) MEMB(HS}) = O(log k).
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