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Abstract. Exact learning of half-spaces over finite subsets of IRn from
membership queries is considered. We describe the minimum set of la-
belled examples separating the target concept from all the other ones
of the concept class under consideration. For a domain consisting of all
integer points of some polytope we give non-trivial lower bounds on the
complexity of exact identification of half-spaces. These bounds are near
to known upper bounds.

1 Introduction

We consider the complexity of exact identification of half-spaces over the domain
M that is an arbitrary finite subset of IRn (n is fixed). We are interested in the
model of learning with membership queries.

The main result of this paper is Theorem 9 describing the structure of the
teaching set T of a half-space c, i. e. a subset of M such that no other half-space
agrees with c on the whole T .

The mentioned theorem is used to obtain the lower bound for the complexity
of identification of half-spaces over the domain {0, 1, . . . , k − 1}n. We show that
MEMB(HSn

k ) = Ω(logn−2 k). For n ≥ 3 this significantly improves Ω(log k) lower
bound [10] on the considered quantity. The presented result can be compared
with the following upper bound. From results of M. Yu.Moshkov in the test
theory [11] it follows that

MEMB(HSn
k ) = O

(
logn k

log log k

)

(see [8]). We remark that for any fixed n there is a learning algorithm that
requires O(logn k) membership queries and polynomial in log k running time.
This algorithm was proposed in [20, 21, 8] .

When M is the set of all integer points of some polytope we give a lower
bound for the complexity MEMB(HS(M)). We show that for any fixed n and
l > n and for any γ there is a polytope P ⊂ IRn described by a system of l linear
inequalities with integer coefficients by absolute value not exceeding γ such that
MEMB(HS(P ∩ IRn)) = Ω(lbn/2c logn−1 γ). We remark that this bound is near
to an upper bound obtained in the threshold function deciphering formalism: an
algorithm that learns a half-space over P ∩ZZn in time bounded polynomially in



l and log γ using O(lbn/2c logn γ) membership queries was proposed in [16] (n is
fixed).

Some other related results see in Sect. 6.

2 Preliminaries

Let M is an arbitrary finite non–empty subset of IRn. M is considered as an
instance space. A concept over M is a subset of M . A concept class is some non-
empty collection of concepts over M . The concept c ⊆ M is called a half-space
over M if there exist real numbers a0, a1, . . . , an such that

c =



x ∈ M |

n∑

j=1

xjaj ≤ a0



 . (1)

The inequality in (1) is called a threshold inequality for c. Denote by HS(M) the
set of all half-spaces over M . Define HSn

k = HS(En
k ) where Ek = {0, 1, . . . , k − 1}.

Each half-space over M is a concept. The class HS(M) is a concept class.
We consider the model of exact learning [1, 10] with membership queries.

The goal of the learner is to identify an unknown target concept c chosen from
a known concept class C, making membership queries (“Is x ∈ c ?” for some
x ∈ M) and receiving yes/no answers. The complexity of a learning algorithm for
C is the maximum number of queries it makes, over all possible target concepts
c ∈ C. The complexity MEMB(C) of a concept class C is the minimum learning
complexity, over all learning algorithms for this class. A set T ⊆ M is said to be
a teaching set for a concept c ∈ C with respect to the class C if no other concept
from C agrees with c on the whole T . If a teaching set is of minimum cardinality,
over all teaching sets for a concept c, then we call it minimum teaching set for c.
Denote by TD(c, C) the cardinality of a minimum teaching set for a concept c.
TD(C) is maximum TD(c, C) over all concepts c in C. TD(C) is called teaching
dimension for the class C. It is clear that MEMB(C) ≥ TD(C) (cf. [9]).

Let Conv (X) be the convex hull of X ⊆ IRn; Affdim (X) is the affine dimen-
sion of X. For a concept c ⊆ M denote by N0(c) (resp. N1(c)) the set of vertices
of Conv (c) (resp. Conv (M \ c)). Denote Pν(c) = Conv Nν(c) (ν = 0, 1).

3 Auxiliary Results

We first remark that a concept c over the domain M belongs to HS(M) if and
only if P0(c) ∩ P1(c) = ∅. Indeed, the necessity is evident and the sufficiency
follows from the Separating Hyperplane Theorem (see [5]).

Associated with each half-space c over M is the cone K(c) of separating
functionals a = (a0, a1, . . . , an, an+1) in an (n + 2) -dimensional vector space



[13, 15]; K(c) is described by the conditions





n∑
j=1

ajxj ≤ a0 for each x ∈ c ,

n∑
j=1

ajxj ≥ a0 + an+1 for each x ∈ M \ c ,

an+1 ≥ 0 .

(2)

Any solution (a0, . . . , an+1) of this system, with an+1 > 0, defines a threshold
inequality for c. The opposite is also true: the coefficients (a0, . . . , an) of any
threshold inequality of c satisfy the system (2) for some positive value of an+1.

For any T0 ⊆ c, T1 ⊆ M \ c we consider the next subsystem of (2):





n∑
j=1

ajxj ≤ a0 for each x ∈ T0 ,

n∑
j=1

ajxj ≥ a0 + an+1 for each x ∈ T1 ,

an+1 ≥ 0 .

(3)

Denote by K(T0, T1) the cone consisting of its solutions. The set

K∗(T0, T1) =





∑

x∈T0

λx




1
−x
0


 +

∑

x∈T1

λx



−1
x
−1


 + ν




0
0
1


 | λx ≥ 0, ν ≥ 0





is a cone, dual to K(T0, T1). A cone is said to be pointed if it does not contain
non-zero subspaces.

Lemma 1. For any T0 ⊆ c, T1 ⊆ M \ c the cone K∗(T0, T1) is pointed.

Proof. Since 0 ∈ K(T0, T1), for some non-negative ν and λx (x ∈ T0 ∪ T1) we
have that 0 =

∑
x∈T0

λx ·(1,−x, 0)+
∑

x∈T1

λx ·(−1, x,−1)+ν ·(0, 0, 1); consequently,
∑

x∈T0

λx =
∑

x∈T1

λx = ν. If ν = 0 then for any x ∈ T0 ∪ T1 it holds that λx = 0,

hence K∗(T0, T1) is a pointed cone. If ν 6= 0 then the point y = 1
ν

∑
x∈T0

λxx =

1
ν

∑
x∈T1

λxx, evidently, belongs to P0 ∩ P1 that is impossible. ut

Lemma 2. For any c ∈ HS(M) the dimension of K(c) is n + 2.

Proof. It is known [5] that the cone K has the full dimension if and only if the
dual cone K∗ is pointed. Since K(c) = K(c,M \ c)), the assertion follows from
Lemma 1. ut

Lemma 3. If Affdim M = n then for any c ∈ HS(M) the cone K(c) is pointed.



Proof. It is sufficient to verify that if a = (a0, a1, . . . , an, an+1) ∈ K(c) and
−a ∈ K(c) then a = 0. From the system (2) we get that in this case an+1 = 0
and, consequently,

M ⊆


x = (x1, x2, . . . , xn) |

n∑

j=1

ajxj = a0



 .

Since the dimension of M is n, all ai (i = 0, . . . , n) are zeroes. ut

Now the following is a consequence of the theory of linear inequalities [5, 12].

Lemma4. If Affdim M = n then for every c ∈ HS(M)
1) the cone K(c) has a unique up to positive factors generating system (the

system of extreme rays)

{b̃(i) = (b(i)
0 , b

(i)
1 , . . . , b(i)

n , b
(i)
n+1), i = 1, . . . , s} ; (4)

2) there are unique sets T0(c) ⊆ c, T1(c) ⊆ M \ c such that (2) is equivalent
to the system





n∑
j=1

ajxj ≤ a0 for each (x1, . . . , xn) ∈ T0(c) ,

n∑
j=1

ajxj ≥ a0 + an+1 for each (x1, . . . , xn) ∈ T1(c) ,

an+1 ≥ 0

(5)

and no subsystem of (5) is equivalent to the system (2);
3) for any x = (x1, . . . , xn) ∈ T0(c) there is a subset I ⊆ {1, . . . , s} such that

|I| = n + 1, the system {b̃(i), i ∈ I} is linearly independent and

n∑

j=1

b
(i)
j xj = b

(i)
0 (i ∈ I),

∑

i∈I

b
(i)
n+1 > 0 ; (6)

4) for any x = (x1, . . . , xn) ∈ T1(c) there is a subset I ⊆ {1, . . . , s} such that
|I| = n + 1, the system {b̃(i), i ∈ I} is linearly independent and

n∑

j=1

b
(i)
j xj = b

(i)
0 + b

(i)
n+1 (i ∈ I),

∑

i∈I

b
(i)
n+1 > 0 .

ut

There is the standard method to reduce the problem with Affdim M < n
to the case of full dimension. Let M ⊆ Qn. Denote by Aff M the affine hull of
M. Suppose that Aff M = {x ∈ IRn | Ax = b} for some A ∈ ZZm×n. Let D be a
Smith’s normal diagonal matrix for A, the matrices P and Q are unimodular ma-
trices such that PAQ = D. Without loss of generality we can take, D = (Im, 0)
where Im is an identity m×m matrix, 0 is a zero n× (n−m) matrix. Perform



the change of variables x = Qy mapping ZZn into ZZn. We have that PAx = Dy
, that is, Aff M is described by the conditions y′ = Pb where y′ = (y1, . . . , ym).
Thus, rewriting remaining conditions in variables y′′ = (ym+1, . . . , yn) we get
the problem in IRn−m with Affdim M = n−m. We remark that there exist P,Q
such that the maximal by absolute value coefficient in the new problem does not
exceed some polynomial in the maximal coefficient of the old problem (see, for
example, [12]).

4 Caracterization of Teaching Sets of Half-Spaces

Theorem 5. Let T0 ⊆ c, T1 ⊆ M \ c. T = T0 ∪ T1 is a teaching set for a
half-space c if and only if (3) is equivalent to (2).

Proof. The sufficiency of the conditions is evident. We prove their necessity.
Assume that there is the solution b = (b0, b1, . . . , bn, bn+1) of (3) that does not
belong to K(c). By Lemma 2, we can suppose that bn+1 > 0. The threshold

inequality
n∑

j=1

bjxj ≤ b0 defines some concept g ∈ HS(M). We have that b /∈
K(c), thus g 6= c. But g agrees with c on T . Hence T is not a teaching set. ut

This theorem leads to

Corollary 6. Let T0 ⊆ c, T1 ⊆ M\c, then for any c ∈ HS(M) the set T = T0∪T1

is a minimum teaching set if and only if Tν = Tν(c) (ν = 0, 1). ut
We note that the 2nd assertion of Lemma 4 is true for any M ⊆ IRn, also

when Affdim M < n. By Corollary 6, we now get

Corollary 7. For any c ∈ HS(M) there is a unique minimum teaching set. It is
contained in every teaching set of c. ut

Denote by T (c) = T0(c)
⋃

T1(c) the minimum teaching set for c.

Corollary 8. (Cf. [14, 7]) For any c ∈ HS(M) it holds that T (c) ⊆ N0(c) ∪
N1(c).

Proof. It is obvious that for Tν = Nν(c) the system (3) is equivalent to the
system (2). The assertion of the corollary follows now from Theorem 5. ut

Let Affdim M = n and c ∈ HS(M). Without loss of generality we can assume
that in (4) it holds that b

(i)
n+1 > 0 for any i = 1, . . . , µ and b

(i)
n+1 = 0 for any

i = µ + 1, . . . , s. Let a = (a1, . . . an),

M0(c, a) =



(y1, . . . , yn) ∈ M |

n∑

j=1

ajyj = max
x∈c

n∑

j=1

ajxj



 ,

M1(c, a) =



(y1, . . . , yn) ∈ M |

n∑

j=1

ajyj = min
x∈M\c

n∑

j=1

ajxj



 .

Denote by Nν(c, a) the set of vertices of the convex hull of Mν(c, a).



Theorem9. If Affdim M = n then for any c ∈ HS(M) it holds that

T (c) =
µ⋃

i=1

(
N0(c, b̃(i)) ∪N1(c, b̃(i))

)
=

⋃
a

(N0(c, a) ∪N1(c, a)) ,

in the right-hand side the union is over all a = (a1, . . . , an) ∈ IRn such that the
inequality

n∑

j=1

ajxj ≤ max
x∈c

n∑

j=1

ajxj

is a threshold inequality for c.

Proof. First we prove the inclusion T (c) ⊆
µ⋃

i=1

(
N0(c, b̃(i)) ∪N1(c, b̃(i))

)
. Let

y = (y1, . . . yn) ∈ T0(c). By the 3rd assertion of Lemma 4, there is i ∈ {1, . . . , µ}
such that

n∑
j=1

b
(i)
j yj = b

(i)
0 . Since b

(i)
n+1 > 0, the coefficients b

(i)
j (j = 0, 1, . . . , n) are

the coefficients of a threshold inequality for c and max
x∈c

n∑
j=1

xjb
(i)
j = b

(i)
0 . It follows

from this that y ∈ M0(c, b̃(i)). Assume that y /∈ N0(c, b̃(i)), i. e. y =
p∑

q=1
αqy

(q)

for some p > 1, αq > 0,
p∑

q=1
αq = 1, y 6= y(q) ∈ M0(c, b̃(i)) (q = 1, . . . , p).

Then y /∈ N0(c) and, by Corollary 8, y /∈ T0(c). This contradiction shows that
y ∈ N0(c, b̃(i)). The case y ∈ T1(c) is proved similarly by the 4th assertion of
Lemma 4.

We now prove that
⋃
a

(N0(c, a) ∪N1(c, a)) ⊆ T (c). Let a = (a1, . . . , an) ∈ IRn

and a0 = max
x∈c

n∑
j=1

ajxj ;
n∑

j=1

ajxj ≤ a0 is a threshold inequality for c. For any

point z ∈ N0(c, a) we consider a concept g = c \ {z}. Let us prove that g ∈
HS(M). Assume the contrary, then P0(g)

⋂
P1(g) 6= ∅. This means that there

are points x(1), . . . , x(p) in g, points y(0), . . . , y(q) in M \ g, and positive numbers
α1, . . . αp, β0, . . . βq such that

x = (x1, . . . , xn) =
p∑

r=1

αrx
(r) =

q∑
t=0

βty
(t) , (7)

p∑
r=1

αr = 1,
q∑

t=0
βt = 1 where x ∈ P0(g)∩P1(g). It is clear that among y(0), . . . , y(q)

there is a point z, since otherwise we obtain that P0(c)
⋂

P1(c) 6= ∅, that is
impossible, because it holds that c ∈ HS(M). Let z = y(0). We have that
n∑

j=1

ajxj =
p∑

r=1
αr

n∑
j=1

ajx
(r)
j =

q∑
t=1

βt

n∑
j=1

ajy
(t)
j + β0

n∑
j=1

ajzj . In the last formula

the central part does not exceed a0; in the right-hand side the first addend is
greater than a0, and the second one is equal to a0. For the equality it is necessary



that q = 0 and
n∑

j=1

ajx
(r)
j = a0 (r = 1, . . . , p). Thus, β0 = 1, z = x. From (7) we

now obtain that z /∈ N0(c, a), that contradicts the condition. Hence g ∈ HS(M).
Since c and g differ only at one point, we have that z ∈ T (c).

Suppose now that a = (a1, . . . , an) ∈ IRn, a0 = min
x∈M\c

n∑
j=1

ajxj . The inequal-

ity
n∑

j=1

ajxj ≥ a0 is true for any point in M \ c and it is false for any point in c.

For each z ∈ N1(c, a) we define a concept g = c ∪ {z}. The further proof is the
same one described above.

It is obvious that
µ⋃

i=1

(
N0(c, b̃(i)) ∪N1(c, b̃(i))

)
⊆ ⋃

a
(N0(c, a) ∪N1(c, a)). The

last inclusion finishes the proof of the theorem. ut

The example x ∈ M is called essential for a concept c ∈ HS (M) if there is
g ∈ HS (M) such that c and g agree on M \ {x} and don’t agree at the point x.
From the last part of Theorem 9 it follows that T (c) is exactly the set of essential
examples for c. For the case of Boolean domain En

2 this is a well-known result
(see [2] and related papers referenced in [2]).

As an example of Theorem9, consider the concept c ∈ HS(E3
9) defined by

the threshold inequality 20x1 + 28x2 + 35x3 ≤ 140. Rewrite the system (5) as
Qa ≥ 0 where a = (a0, . . . , an+1)T is a column of variables and Q is a matrix
formed from the coordinates of the points of T (c). Let B be a matrix formed
from the entries of the vectors b̃(i), S = QB, I is an identity matrix. The matrix

(
E B
Q S

)

is represented in Table 4. We have that µ = 3,

N0(c, b̃(1)) = {p(1), p(3)}, N1(c, b̃(1)) = {q(1), q(2)} ,

N0(c, b̃(2)) = {p(1), p(2)}, N1(c, b̃(2)) = {q(1), q(3)} ,

N0(c, b̃(3)) = {p(1), p(2), p(3)}, N3(c, b̃(1)) = {q(1)}

where p(1) = (7, 0, 0), p(2) = (0, 5, 0), p(3) = (0, 0, 4), q(1) = (4, 1, 1), q(2) =
(3, 3, 0), q(3) = (2, 0, 3), b̃(1) = (56, 8, 11, 14, 1), b̃(2) = (70, 10, 14, 17, 1), b̃(3) =

(140, 20, 28, 35, 140). By Theorem9, Tν(c) =
3⋃

i=1

Nν(c, b̃(i)) (ν = 0, 1). For the

considered example in the union it suffices to retain solely 2 members. Indeed,
T0(c) = N0(c, b̃(3)) = N0(c, b̃(1)) ∪N0(c, b̃(2)), T1(c) = N1(c, b̃(1)) ∪N1(c, b̃(2)).



Table 1. Example of Theorem 9

1 0 0 0 0 56 70 140 140 105 84 80 50 36 21
0 1 0 0 0 8 10 20 20 15 12 11 7 5 3
0 0 1 0 0 11 14 28 28 21 16 16 10 7 4
0 0 0 1 0 14 17 35 35 25 21 20 12 9 5
0 0 0 0 1 1 1 3 0 0 0 0 0 0 0

1 -7 0 0 0 0 0 0 0 0 0 3 1 1 0
1 0 -5 0 0 1 0 0 0 0 4 0 0 1 1
1 0 0 -4 0 0 2 0 0 5 0 0 2 0 1

-1 4 1 1 -1 0 0 0 3 1 1 0 0 0 0
-1 3 3 0 -1 0 1 1 4 3 0 1 1 0 0
-1 2 0 3 -1 1 0 2 5 0 3 2 0 1 0
0 0 0 0 1 1 1 3 0 0 0 0 0 0 0

5 Bounds for the Teaching Dimension of Half-Spaces

Denote by N the set of vertices of the polytope Conv M .

Lemma10. If c = M or c = ∅ then it holds that T (c) = N .

Proof. Assume that for c = M there is a point x ∈ N \ T (c). Consider the
concept g = M \{x}. Since x ∈ N , it is clear that g ∈ HS(M) and, consequently,
x ∈ T (c). We have proved that N ⊆ T (c). The opposite inclusion follows from
Corollary 8. For c = ∅ the lemma can be proved by analogy. ut

From Lemma 10 it follows that TD(HSn
k ) ≥ 2n. Indeed, assume that c =

En
k . By Lemma 10 we have that TD(c) = 2n, hence TD(HSn

k ) ≥ 2n. Thus, no
polynomial in n algorithm for learning half-spaces over En

k from membership
queries exists. This was originally proved in [14].

Let P be a polytope in IRn that can be described as an integer system of l
linear inequalities with integer coefficients whose absolute values do not exceed
γ. Denote by P(n, l, γ) the class of all such polytopes. For the class HS(M) with
M = P ∩ ZZn and P ∈ P(n, l, γ) we have

Theorem11. For every natural n ≥ 2 and l > n there is γ0 such that for every
γ ≥ γ0 there exists a polytope P ∈ P(n, l, γ) such that

MEMB(HS(M)) ≥ TD(HS(M)) ≥ Dnlbn/2c logn−1 γ

where M = P ∩ ZZn and Dn is some positive quantity depending only on n.

Proof. It was proved in [6] (cf. [3]) that for any fixed n ≥ 2 and l > n, for any
sufficiently large γ there exists a polytope P ∈ P(n, l, γ) such that the number
of vertices of Conv (P

⋂
ZZn) is not less than Dnlbn/2c logn−1 γ. The assertion to

be proved follows now from Lemma 10. ut



Return to the class HSn
k . Denote by N(a0, a1, . . . , an) the set of all vertices

of a convex hull of solutions of the following system:




n∑
j=1

ajxj = a0 ;

xj ≥ 0; xj ∈ ZZ (j = 1, . . . , n) .

In [18] S. I. Veselov got a lower bound for the mean quantity of |N(a0, a1, . . . , an)|
(see Sect. 3.5 of [15]). This leads to

Lemma 12. For every n ≥ 2, k ≥ 2 there are positive numbers a0, a1, . . . , an

such that ai ≤ k − 1 (i = 0, 1, . . . , n) and

|N(a0, a1, . . . , an)| ≥ Cn logn−2 k

where Cn is some positive quantity depending only on n. ut

Theorem 13. For every n ≥ 2 and k ≥ 2

Cn logn−2 k ≤ TD(HSn
k ) ≤ C ′n logn−1 k

where Cn and C ′n are some quantities depending only on n.

Proof. The lower bound was announced (without a proof) in [17]. To obtain it
we construct a concept c in the following manner. Consider a0, a1, . . . , an in the
assertion of Lemma 12 as the coefficients of a threshold inequality of c. Since
1 ≤ ai ≤ k − 1, we have that N(a0, . . . , an) ⊆ En

k . From Theorem 9 it fol-
lows that T (c) ⊇ N(a0, . . . , an), hence, TD(c,HSn

k ) ≥ Cn logn−2 k, consequently,
TD(HSn

k ) ≥ Cn logn−2 k.
The upper bound was proved by T. Hegedüs [7] on the base of [13]. It is

clear that for Tν = Nν(c) the system (2) is equivalent to the system (3), hence
T (c) ⊆ N0(c)

⋃
N1(c); it is known [7] that |N0(c)|+ |N1(c)| ≤ C ′n logn−1 k where

C ′n is some quantity depending only on n. Thus for any concept c ∈ HSk
n the

inequality TD(c) ≤ C ′n logn−1 k holds. ut

The lower bound in Theorem 13 gives us that MEMB(HSn
k ) ≥ Cn logn−2 k.

6 Related Results and Open Problems

In proving the lower bound for the teaching dimension of half-spaces over En
k we

used the fact that the quantity µ in Theorem 9 is at least 1. An open problem
remains: it would be helpful to estimate from above the quantity µ (we remark
that for n ≥ 3 there are examples with µ = 2, 3). In this way one could apparently
decrease the upper bound on TD(HSn

k ). For instance, it is known from [17] that
TD(HS2

k) = 4. This result is of considerable interest because (as it was shown in
[4, 19]) MEMB(HS2

k) = Θ(log k).
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