Решетки и приведенные базисы Лекция

Н.Ю. Золотых

2 ноября 2006

Содержание

1	Решетки	1
2	Ортогонализация Грама-Шмидта	2
3	Кратчайший вектор решетки	2
4	Алгоритм приведения Гаусса (n = 2)	3
5	Свойства кратчайших векторов	3
6	Последовательные минимумы решетки	4
7	Базисы Коркина-Золотарева	4
8	с-ортогональные базисы	4
9	с-приведенные базисы	5
10	с–приведенные по Ловасу базисы	6
11	Алгоритм Ловаса приведения базиса решетки	7
12	Пример работы алгоритма LLL-REDUCTION	10
13	Использование Arageli	11
14	Приложения	14

1 Решетки

Пусть b_1, \ldots, b_n — некоторые линейно независимые векторы в *m*-мерном евклидовом пространстве. Рассмотрим *решетку*

$$\Lambda = \Lambda(b_1, \dots, b_n) = \left\{ x : \sum_{j=1}^n \alpha_j b_j, \ \alpha_j \in \mathbf{Z} \ (j = 1, 2, \dots, n) \right\}.$$

Векторы b_1, \ldots, b_n называются е
е базисом, а число n — размерностью (или рангом). Матрицей Грама называется матрица

$$\Gamma(b_1, \dots, b_n) = \begin{pmatrix} (b_1, b_1) & (b_1, b_2) & \dots & (b_1, b_n) \\ (b_2, b_1) & (b_2, b_2) & \dots & (b_2, b_n) \\ \dots & \dots & \dots & \dots \\ (b_n, b_1) & (b_n, b_2) & \dots & (b_n, b_n) \end{pmatrix}$$

.

Рис. 1: Процесс ортогонализации Грама-Шмидта

Число

$$\det \Lambda = \sqrt{\det \Gamma(b_1, \ldots, b_n)}$$

называется определителем решетки. Определитель решетки равен объему фундаментального параллелепипеда, натянутого на векторы b_1, \ldots, b_n . Заметим, что если m = n, то det $\Lambda = \det(b_1, \ldots, b_n)$, где (b_1, \ldots, b_n) — матрица, составленная из координат векторов b_1, \ldots, b_n в некотором ортонормированном базисе. Базис решетки не единственен, но легко видеть, что матрица перехода от одного базиса решетки к произвольному другому унимодулярна, т.е. ее определитель равен ± 1 , поэтому det Λ не зависит от выбора базиса.

2 Ортогонализация Грама–Шмидта

Применим к векторам b_1, \ldots, b_n процесс ортогонализации Грама-Шмидта:

$$b_k^* = b_k - \sum_{l=1}^{k-1} \mu_{kl} b_l^* \quad (k = 1, 2, \dots, n),$$
(1)

где

$$\mu_{kl} = \frac{(b_k, b_l)}{(b_l, b_l)} \qquad \text{при } k > l.$$

$$\tag{2}$$

Заметим, что b_k^* есть проекция вектора b_k на ортогональное дополнение к подпространству $L(b_1, \ldots, b_{k-1}) = L(b_1^*, \ldots, b_{k-1}^*)$. Отсюда, в частности, следует, что b_1^*, \ldots, b_n^* составляют ортогональный базис подпространства $L(b_1^*, \ldots, b_n^*)$ (но не базис решетки Λ , так как векторы b_k^* могут ей не принадлежать).

Лемма 1 (Неравенство Адамара). Пусть b_1, \ldots, b_n — некоторый базис решетки Λ , $a \ b_1^*, \ldots, b_n^*$ — векторы, полученные из него в результате ортогонализации Грама–Шмидта (1), (2). Тогда

$$\det \Lambda = \prod_{i=1}^{n} |b_i^*| \le \prod_{i=1}^{n} |b_i|.$$

3 Кратчайший вектор решетки

Ненулевой вектор решетки минимальной длины называется ее кратчайшим вектором.

Лемма 2. Пусть b_1, \ldots, b_n — некоторый базис решетки Λ , а b_1^*, \ldots, b_n^* — векторы, полученные из него в результате ортогонализации Грама-Шмидта (1), (2). Тогда

$$\ell \geq \min\{|b_1^*|, \dots, |b_n^*|\},\$$

где ℓ — длина кратчайшего вектора решетки Λ .

Доказательство. Представим кратчайший вектор x в виде

$$x = \sum_{i=1}^{n} \alpha_i b_i = \sum_{i=1}^{n} \lambda_i b_i^*, \qquad \text{где } \alpha_i \in \mathbf{Z}, \, \lambda_i \in \mathbf{R}.$$
(3)

Пусть j — наибольший индекс, для которого $\alpha_j \neq 0$. Умножая все части равенства (3) скалярно на b_j^* , получаем $\alpha_j(b_j, b_j^*) = \lambda_j(b_j^*, b_j^*)$. Так как $(b_j, b_j^*) = (b_j^*, b_j^*)$, то $\alpha_j = \lambda_j \geq 1$. Поэтому

$$|x|^{2} \ge \lambda_{i}^{2} |b_{j}^{*}|^{2} = \alpha_{j}^{2} |b_{j}^{*}|^{2} \ge |b_{j}^{*}|^{2}.$$

4 Алгоритм приведения Гаусса (n = 2)

Рассмотрим алгоритм Гаусса построения кратчайшего вектора двумерной решетки.

procedure Gauss-Reduction (var b_1, b_2)

repeat
if
$$|b_1| > |b_2|$$

 $b_1 \leftrightarrow b_2$;
end
найти такое q , что $b_2 - qb_1$ имеет минимальную длину;
if $q = 0$
return
end
 $b_2 \leftarrow b_2 - qb_1$;
end

end.

Очевидно, что на выходе алгоритма векторы b_1 , b_2 составляют базис решетки. Простые геометрические соображения показывают, что при этом b_1 — кратчайший вектор решетки, а b_2 составляет с b_1 угол θ , такой, что

$$\frac{\pi}{2} - \frac{\pi}{6} \le \theta \le \frac{\pi}{2} + \frac{\pi}{6}.$$

5 Свойства кратчайших векторов

Замечание 3. Задача отыскания кратчайшего вектора решетки является NP-трудной [7]¹.

Теорема 4 (Ш. Эрмит, см. [2]). Пусть $\ell - длина кратчайшего вектора решетки Л. Тогда$

$$\ell \le \gamma_n^{1/2} (\det \Lambda)^{1/n},\tag{4}$$

где γ_n — некоторая величина, зависящая только от n.

Замечание 5. Значение γ_n , при котором оценка (4) достигается, называется константой Эрмита. Известно, что для нее справедлива асимптотическая оценка

$$rac{1}{2\pi e} + o(1) \leq rac{\gamma_n}{n} \leq rac{1}{\pi e} + o(1)$$
 при $n \to \infty$

¹Я не проверял эту ссылку. Хорошо известно, что задача отыскания кратчайшего вектора решетки для норм L_1 , L_{∞} являются NP-трудными. Для нормы L_2 (о которой в тексте идет речь) проблема долгое время была открытой.

и точное неравенство

$$\gamma_n \le \left(\frac{4}{3}\right)^{(n-1)/2},\tag{5}$$

поэтому

$$\ell \le \left(\frac{4}{3}\right)^{(n-1)/4} (\det \Lambda)^{1/n}.$$
 (6)

Точное значение γ_n известно только для небольших n:

$$\gamma_1 = 1, \quad \gamma_2^2 = \frac{4}{3}, \quad \gamma_3^3 = 2, \quad \gamma_4^4 = 4, \quad \gamma_5^5 = 8, \quad \gamma_6^6 = \frac{64}{3}, \quad \gamma_7^7 = 64, \quad \gamma_8^8 = 256.$$

6 Последовательные минимумы решетки

Пусть b_1, \ldots, b_n — векторы из Λ , удовлетворяющие следующему свойству. Среди всех векторов, принадлежащих Λ , но не принадлежащих $L(b_1, \ldots, b_{k-1})$, вектор b_k имеет минимальную длину $(k = 1, \ldots, n)$ (считаем, что $L(\emptyset) = \{0\}$). Очевидно, что тогда векторы b_1, \ldots, b_n составляют базис решетки Λ . Этот базис называется *редуцированным по Минковскому*, при этом b_k называется k-м последовательным минимумом решетки.

Теорема 6 (см. [2]). Для редуцированного по Минковскому базиса b_1, \ldots, b_n справедливо

$$|b_1| \cdot \ldots \cdot |b_n| \le \gamma_n^{n/2} \det \Lambda,\tag{7}$$

где γ_n — константа Эрмита. В частности, из (5) следует

$$|b_1| \cdot \ldots \cdot |b_n| \le \left(\frac{4}{3}\right)^{n(n-1)/4} \det \Lambda,\tag{8}$$

Замечание 7. Неравенство (7) указывает на то, что приведенный по Минковскому базис близок к ортогональному.

7 Базисы Коркина–Золотарева

Пусть векторы b_1^*, \ldots, b_n^* получены из базиса b_1, \ldots, b_n решетки Λ в результате ортогонализации (1), (2). Базис b_1, \ldots, b_n решетки Λ называется приведенным по Коркину–Золотареву², если

*b*₁ — кратчайший вектор решетки;

 b_k — ненулевой вектор решетки, такой, что проекция b_k на орт. доп. к $L(b_1, \ldots, b_{k-1})$ минимальна $(k = 2, \ldots, n);$

$$|\mu_{kl}| \le \frac{1}{2}$$
 $(1 \le l < k \le n).$

8 с-ортогональные базисы

Неравенство (8) обосновывает введение нового понятия. Базис b_1, \ldots, b_n называется *с-ортогональным*, или *с-редуцированным по Ленстре*, (первый термин взят из [5]), если

$$|b_1|\cdot\ldots\cdot|b_n|\leq c^{n(n-1)/4}\det\Lambda.$$

Из неравенства Адамара следует, что при c < 1 *с*-ортогонального базиса не существует, а при c = 1 это понятие превращается в ортогональность. Из теоремы 6 следует, что для любой решетки существует *с*-ортогональный базис при $c \ge 4/_3$. Первый полиномиальный при фиксированном *n* алгоритм нахождения *с*-ортогонального базиса для $c > 4/_3$ предложил Х. Ленстра [9], см. также [5, § 5.3 п. 2]. Первый полиномиальный алгоритм построения *с*-ортогонального базиса предложил Л. Ловас (см. ниже).

 $^{^2 \}rm Александр Николаевич Коркин (1837–1908) и Егор Иванович Золотарёв (1847–1878) — русские математики.$

9 с-приведенные базисы

Теперь введем понятие *с*-приведенного базиса. Пусть векторы b_1^*, \ldots, b_n^* получены из базиса b_1, \ldots, b_n решетки Λ в результате ортогонализации (1), (2). Базис b_1, \ldots, b_n называется *с-приведенным* (по Зигелю) (термин взят из [5]), если

$$|\mu_{kl}| \le \frac{1}{2}$$
 $(1 \le l < k \le n);$ (9)

$$|b_{k-1}^*|^2 \le c \cdot |b_k^*|^2 \qquad (k = 2, 3, \dots, n).$$
⁽¹⁰⁾

Далее мы увидим, что *с*-приведенный базис является *с*-ортогональным. Обратное, вообще говоря, не верно. Например, базис $b_1 = (1, 1)^{\top}$, $b_2 = (0, 1)^{\top}$ при c = 2 является *с*-ортогональным, но не является *с*-приведенным. Действительно, для него $\mu_{21} = \frac{1}{2}$, $b_1^* = (1, 1)^{\top}$, $b_2^* = (-\frac{1}{2}, \frac{1}{2})^{\top}$, $|b_1|^2 = 2$, $|b_2^*|^2 = \frac{1}{2}$. Неравенство $|b_1|^2 \cdot |b_2|^2 \le 2 \cdot |b_1^*|^2 \cdot |b_2^*|^2$ выполнено, а $|b_1^*|^2 \le 2 \cdot |b_2^*|^2$ — нет.

Известно [2], что при $c \ge 4/_3$ для любой решетки *с*-приведенный базис существует. Его существование при $c > 4/_3$ будет следовать также из приведенного далее алгоритма построения более специального базиса.

Сначала приведем некоторые неформальные соображения, указывающие на то, что *с*-приведенный базис состоит из коротких, почти ортогональных друг к другу векторов.

Условие (9) означает, что длина проекции вектора b_k на вектор b_l^* не должна быть слишком большой по сравнению с вектором b_l^* . Заметим, что это условие будет выполнено, если b_k почти ортогонален b_l^* или если длина вектора b_k мала по сравнению с длиной вектора b_l^* . Таким образом, условия (9) могут не означать, что базис состоит из почти ортогональных векторов. Например, возможна ситуация, когда b_1 — очень длинный вектор, b_2 мал по сравнению с b_1 , b_3 мал по сравнению с b_2 и т. д. Однако реализоваться этой ситуации препятствуют условия (10), означающие, что длины векторов в *c*-приведенном базисе «почти не уменьшаются» (длина вектора b_k^* не слишком мала по сравнению с длиной вектора b_{k-1}^*).

Из следующих теорем следует, что c-приведенный базис является c-ортогональным, а вектор b_1 близок к кратчайшему вектору решетки.

Теорема 8. Пусть b_1,\ldots,b_n — c-приведенный базис решетки $\Lambda,\,c\geq 3/_4$, тогда

$$\det \Lambda \le |b_1| \cdot \ldots \cdot |b_n| \le c^{n(n-1)/4} \det \Lambda.$$
(11)

$$|b_1| \le c^{(n-1)/4} (\det \Lambda)^{1/n}.$$
(12)

(Cp. c (4), (6) u (7), (8) coombemcmbeho).

Доказательство. Первое неравенство в (11) — это неравенство Адамара. Докажем второе неравенство. Пусть b_1^*, \ldots, b_n^* — векторы, полученные из b_1, \ldots, b_n в результате ортогонализации Грама–Шмидта (1), (2). Из (10) следует, что при $l \leq k$

$$|b_l^*|^2 \le c^{k-l} |b_k^*|^2. \tag{13}$$

Поэтому, ввиду $|\mu_{kl}| \leq 1/2$ и $c \geq 3/4$, имеем

$$|b_k|^2 = |b_k^*|^2 + \sum_{l=1}^{k-1} \mu_{kl}^2 |b_l^*|^2 \le |b_k^*|^2 \cdot \left(1 + \frac{1}{4} \sum_{l=1}^{k-1} c^l\right) = |b_k^*|^2 \cdot \left(\frac{3}{4} + \frac{c^k - 1}{4(c-1)}\right) \le \frac{3}{4} \cdot c^k \le |b_k^*|^2 \cdot c^{k-1}.$$
(14)

Следовательно,

$$\prod_{k=1}^{n} |b_k|^2 \le 1 \cdot c \cdot \ldots \cdot c^{n-1} \cdot (\det \Lambda)^2 = c^{n(n-1)/2} \cdot (\det \Lambda)^2$$

Теперь докажем (12). Из (13) и (14) следует $|b_l| \leq c^{(k-1)/2} |b_k^*|$ при $1 \leq l < k \leq n$. В частности, $|b_1|^2 \leq |b_1^*|^2$, $|b_1|^2 \leq c |b_2^*|^2$, ..., $|b_1|^2 \leq c^{n-1} |b_n^*|^2$. Перемножив эти неравенства, получим

$$|b_1|^{2n} \le 1 \cdot c \cdot \ldots \cdot c^{n-1} \cdot \prod_{i=1}^n |b_i^*|^2 = c^{(n-1)/2} (\det \Lambda)^2,$$

откуда вытекает (12).

Замечание 9. Из (11) следует, что *с*-приведенный базис является *с*-ортогональным. Обратное, вообще говоря, не верно.

Замечание 10. Сравнение формул (11) и (12) с (4), (6) и (7), (8) соответственно показывает, что с-приведенный базис обладает некоторыми важными свойствами, которыми удовлетворяет базис, приведенный по Минковскому.

Теорема 11. Пусть $b_1, \ldots, b_n - c$ -приведенный базис решетки Λ , $\ell - d$ лина кратчайшего вектора. Тогда

$$|b_1| \le c^{(n-1)/2} \ell. \tag{15}$$

Доказательство. По лемме 2

 $\ell \geq \min\{|b_1^*|,\ldots,|b_n^*|\},\$

но $|b_1|^2 = |b_1^*|^2 \le 2|b_2^*|^2 \le \ldots \le 2^{n-1}|b_n^*|^2$, поэтому min $\{|b_1^*|^2, \ldots, |b_n^*|^2\} \ge 2^{1-n}|b_1|^2$, откуда получаем требуемое.

Замечание 12. Неравенство (15) показывает, что b_1 — один из самых коротких векторов решетки. Заметим, что при доказательстве этой теоремы мы не пользовались свойством (9).

Упражнение 13. Доказать, что если векторы x_1, \ldots, x_t из Λ линейно независимы, то $|b_j| \le 2^{(n-1)/2} \max\{|x_1|, \ldots, |x_t|\}$ при $1 \le j \le t$.

Полиномиальный алгоритм построения *c*-приведенного базиса при c > 4/3 описан в [4], см. [5, § 5.4 п. 1].

10 с-приведенные по Ловасу базисы

Пусть векторы b_1^*, \ldots, b_n^* получены из базиса b_1, \ldots, b_n решетки Λ в результате ортогонализации (1), (2). Базис b_1, \ldots, b_n называется *c*-*приведенным по Ловасу*, $c \geq \frac{4}{3}$, если

$$|\mu_{kl}| \le \frac{1}{2} \qquad (1 \le l < k \le n);$$
(16)

$$|b_k^* + \mu_{k,k-1}b_{k-1}^*|^2 \ge y \, |b_{k-1}^*|^2, \qquad y = \frac{4+c}{4c} \qquad (k=2,3,\ldots,n).$$
(17)

Таким образом, определение *c*-приведенного по Ловасу базиса получается из определения *c*-приведенного базиса заменой условия (10) условием (17). Далее мы увидим, что (17) сильнее (10). В литературе такие базисы часто (особенно при c = 2, y = 3/4) называют *LLL-приведенными* по первым буквам авторов работы [10], где впервые они появились. Заметим, что если c > 4/3, то 1/4 < y < 1.

Так как $b_k^* + \mu_{k,k-1}b_{k-1}^*$ есть проекция вектора b_k на ортогональное дополнение к $L(b_1, \ldots, b_{k-2})$, то (17) означает, что эта проекция не слишком мала по сравнению с проекцией b_{k-1} на это ортогональное дополнение. Условие (17) эквивалентно

$$|b_k^*|^2 \ge \left(y - \mu_{k,k-1}^2\right) |b_{k-1}^*|^2 \qquad (k = 2, 3, \dots, n).$$
(18)

Заметим, что из (16) и (18) легко получить неравенство (10):

$$|b_k|^2 \ge |b_k^*|^2 \ge (y - \mu_{k,k-1}^2) |b_{k-1}^*|^2 \ge \frac{1}{c} |b_{k-1}^*|^2.$$

Таким образом, базис, *с*-приведенный по Ловасу, является *с*-приведенным. Обратное, вообще говоря, не верно. Например, базис $b_1 = b_1^* = (4, 0)^\top$, $b_2 = b_2^* = (0, 3)^\top$ (он ортогональный) для c = 2 является *с*-приведенным, но не является *с*-приведенным по Ловасу, так как в данном случае $|b_1^*|^2 = 16$, $|b_2^*|^2 = 9$, $\mu_{21} = 0$. Неравенство $\mu_{11} \le 2\mu_{22}$ выполнено, а $|b_2^*|^2 \ge (3/4 - \mu_{21}^2)|b_1^*|^2 -$ нет.

Рис. 2: Приведенные базисы решетки

11 Алгоритм Ловаса приведения базиса решетки

Рассмотрим алгоритм построения приведенного по Ловасу базиса. Как и само понятие такого базиса, алгоритм приведения был предложен Л. Ловасом [10]. Название LLL-алгоритм получил по первым буквам авторов работы [10], где впервые он был опубликован. При c > 4/3 алгоритм является полиномиальным. Он основан на двух идеях:

- Если при некоторых k и l условие (16) не выполнено, то b_k можно заменить на $b_k \lceil \mu_{kl} \rfloor b_l$. При этом μ_{kl} необходимо заменить на $\mu_{kl} \lceil \mu_{kl} \rfloor$ (и обновить значения μ_{kj} при j < l). Очевидно, что после этого условие (16) будет выполнено. Данная процедура называется SIZE-REDUCTION.
- Если при некотором k условие (17) не выполнено, то b_k можно поменять местами с b_{k-1} . При этом новым значением b_{k-1}^* станет $b_k^* + \mu_{k,k-1}b_{k-1}^*$ (кроме этого изменятся вектор b_k^* и величины μ_{ij}). В результате величина $|b_{k-1}^*|^2$ уменьшится (более чем в c раз). Эта процедура называется INTERCHANGE.

Сначала рассмотрим простейший вариант LLL-алгоритма. Далее $\beta_i = |b_i^*|^2$ (i = 1, 2, ..., n).

```
procedure LLL-REDUCTION-0 (var b_1, \ldots, b_n)
          найти числа \mu_{ij} (i > j), \beta_i и построить систему b_1^*, \ldots, b_n^*;
          k \leftarrow 2;
          while k < n
                   for l \leftarrow k - 1, k - 2, ..., 1
                            if |\mu_{k,l}| > 1/2
                                        SIZE-REDUCTION(k, l);
                             end;
                   end;
                   \mathbf{if} \ |b_k^*|^2 < \left(y - \mu_{k,k-1}^2\right) |b_{k-1}^*|^2
                             INTERCHANGE (k):
                             k \leftarrow \max\{2, k-1\};
                   else
                            k \leftarrow k+1;
                   end;
          end;
end.
procedure Size-Reduction (k, l)
          q \leftarrow \lceil \mu_{kl} \mid;
          b_k \leftarrow b_k - qb_l;
          \mu_{kl} \leftarrow \mu_{kl} - q;
          for j \leftarrow 1, \ldots, l-1
                  \mu_{kj} \leftarrow \mu_{kj} - q\mu_{lj};
          end
end.
procedure INTERCHANGE (k)
          b_k \leftrightarrow b_{k-1};
          for j \leftarrow 1, \ldots, k-2
               \mu_{kj} \leftrightarrow \mu_{k-1,j};
          end

\begin{array}{l} \mu \leftarrow \mu_{k,k-1}; \\ \beta \leftarrow \beta_k - \mu^2 \beta_{k-1}; \end{array}
```

$$\begin{split} & \mu_{k,k-1} \leftarrow \mu \beta_{k-1} / \beta \\ & b \leftarrow b_{k-1}^*; \\ & b_{k-1}^* \leftarrow b_k^* + \mu b; \\ & b_k^* \leftarrow -\mu_{k,k-1} b_k^* + (\beta_k / \beta) b; \\ & \beta_k \leftarrow \beta_{k-1} \beta_k / \beta; \\ & \beta_{k-1} \leftarrow \beta; \\ & \text{for } i \leftarrow k+1, \dots, n \\ & t \leftarrow \mu_{ik}; \\ & \mu_{ik} \leftarrow \mu i, k-1 - \mu t; \\ & \mu_{i,k-1} \leftarrow t + \mu k, k - 1 \mu_{ik}; \\ & \text{end} \end{split}$$

Из предыдущего ясно, что если алгоритм LLL-REDUCTION-0 остановит свою работу, то в результате система b_1, \ldots, b_n будет составлять LLL-приведенный базис решетки.

Докажем конечность алгоритма.

end.

Рассмотрим, какие из величин $\beta_i = |b_i^*|^2$ изменяются в процессе работы алгоритма INTERCHANGE. Изменяются только β_{k-1} и β_k . При этом β_{k-1} заменяется на $\beta = \beta_k - \mu_{k,k-1}^2 \beta_{k-1}$ — как мы уже видели, это приводит к ее уменьшению более чем в *c* раз. А β_k заменяется на $\beta_{k-1}\beta_k/\beta$. Рассмотрим как при этом меняется величина

$$B = \left(\det \Lambda(b_1, \dots, b_i)\right)^2 = \beta_1^n \cdot \beta_2^{n-1} \cdot \dots \cdot \beta_n.$$

Сейчас меняются только следующие множители:

$$\beta_{k-1}^{n-k+2} \cdot \beta_k^{n-k+1} = \beta_{k-1} \cdot \underbrace{(\beta_{k-1} \cdot \beta_k)^{n-k+1}}_{\text{He изменяется}}.$$

Таким образом, при каждом вызове процедуры INTERCHANGE величина *B* уменьшается во столько раз, во сколько уменьшается β_{k-1} , т.е. более, чем в *c* раз. Этот процесс не может продолжаться бесконечно, так как из теоремы 4 следует, что det $\Lambda(b_1, \ldots, b_i)$, а, следовательно, и *B* ограничены снизу³.

Теорема 14. [10] Пусть $\Lambda = \Lambda(b_1, \ldots, b_n)$ — решетка в \mathbb{Z}^n , причем $|b_i| \leq 2 \leq \alpha$ $(i = 1, 2, \ldots, n)$, c > 3/4. Тогда алгоритм LLL-REDUCTION-0 построения с-приведенного по Ловасу базиса выполнит $O(n^4 \log \alpha)$ арифметических операций над целыми числами длины $O(n \log \alpha)$ битов.

При n = 2 алгоритм LLL-REDUCTION-0 превращается в GAUSS-REDUCTION.

Рассмотрим некоторые усовершенствования алгоритма LLL-REDUCTION-0. Во-первых, проверку условия $|\mu_{k,l}| > 1/2$ при l < k - 1 можно отложить, так как при этих значениях l величины μ_{kl} не участвуют в проверке перед вызовом процедуры INTERCHANGE. Это замечание приводит нас к следующему варианту алгоритма:

ргосеdure LLL-REDUCTION-1 (var b_1, \ldots, b_n) найти числа μ_{ij} (i > j), β_i и построить систему b_1^*, \ldots, b_n^* ; $k \leftarrow 2$; while $k \le n$ if $|\mu_{k,k-1}| > 1/2$ SIZE-REDUCTION(k, k - 1); end; if $|b_k^*|^2 < (y - \mu_{k,k-1}^2) |b_{k-1}^*|^2$ INTERCHANGE(k, l); $k \leftarrow \max\{2, k - 1\}$; else for $l \leftarrow k - 2, k - 3, \ldots, 1$

³Если скалярное произведение задано матрицей Грама с целыми коэффициентами, то ограниченность снизу величины det $\Lambda(b_1, \ldots, b_i) \in \mathbb{Z}$ очевидна: $|\det \Lambda(b_1, \ldots, b_i)| \ge 1$. К этому случаю можно также свести случай матрицы Грама с рациональными коэффициентами.

```
\label{eq:constraint} \begin{array}{c} \mathbf{if} \; |\mu_{k,l}| > \; ^{1\!/\!2} \\ & \mathrm{SIZE-REDUCTION}(k,l); \\ & \mathbf{end}; \\ & \mathbf{end}; \\ & k \leftarrow k+1; \\ & \mathbf{end}; \\ \end{array}
```

end.

Во время выполнения процедуры INTERCHANGE перевычисляется большое количество коэффициентов μ_{ij} и векторов b_j^* . Многие них изменят несколько раз свое значение, перед тем, как быть использованными. Объем вычислений можно уменьшить, если вычислять μ_{ij} и b_j^* по мере необходимости. В следующем варианте алгоритма k_{\max} равно максимальному достигнутому ранее значению k. В процедуре INTERCHANGE необходимо заменить n на k_{\max} .

```
procedure LLL-REDUCTION (var b_1, \ldots, b_n)
          \begin{array}{l} b_1^* \leftarrow b_1; \\ \beta_i = |b_1^*|^2; \end{array}
          k_{\max} \leftarrow 1;
k \leftarrow 2;
          while k \leq n
                    if k > k_{\max}
                               k_{\max} \leftarrow k;
                               найти числа \mu_{kj} (j < k), \beta_k и построить систему b_k^*;
                     end;
                    if |\mu_{k,k-1}| > 1/_2
                                 SIZE-REDUCTION(k, k-1);
                     end;
                     \begin{split} \mathbf{if} \; |b_k^*|^2 &< \left(y - \mu_{k,k-1}^2\right) |b_{k-1}^*|^2 \\ & \text{INTERCHANGE}(k); \end{split} 
                               k \leftarrow \max\{2, k-1\};
                    else
                               for l \leftarrow k - 2, k - 3, ..., 1
                                         if |\mu_{k,l}| > 1/_2
                                                     SIZE-REDUCTION(k, l);
                                          end:
                               end;
                               k \leftarrow k+1;
                     end:
          \mathbf{end};
```

end.

Приведенный здесь алгоритм LLL-REDUCTION по существу совпадает с алгоритмом 2.6.3 из [12].

Замечание 15. Чтобы получить матрицу перехода из исходного базиса в найденный LLL-приведенный, достаточно в ходе вычислений выполнять следующие действия. В начале работы алгоритма LLL-REDUCTION положить H равной единичной матрице. В алгоритме SIZE-REDUCTION выполнить присваивание $h_k = h_k - qh_l$, где $h_j - j$ -й столбец матрицы H. В алгоритме INTERCHANGE выплнить перестановку столбцов h_k и h_{k-1} .

Также матрица перехода может быть вычислена по окончании работы алгоритма по имеющимся исходному и найденному базисам.

Замечание 16. Если матрица Грама для исходного базиса целочисленна, то алгоритм можно модифицировать так, что все вычисления будут проходить только с целыми числами.

Программные реализации LLL-алгоритма содержатся, например, в библиотеках [11, 15, 14].

Различные модификации описанных здесь алгоритмов, постановок задач и приложения см. в [5, 12].

Пример работы алгоритма LLL-REDUCTION 12

Пример 17. Найдем с-приведенный по Ловасу базис решетки, натянутой на векторы, чьи столбцы координат в некотором ортонормированном базисе записанны по столбцам матрицы

$$A = \left(\begin{array}{rrr} 17 & 0 & 81 \\ 1 & 17 & 0 \\ 0 & 1 & 0 \end{array} \right)$$

Выберем c = 2, следовательно, y = 3/4. Векторы b_1, b_2, b_3 и b_1^*, b_2^*, b_3^* будем записывать по столбцам в матрицы B и B^* соответственно. Матрица M будет содержать коэффициенты μ_{ij} . На диагонали матрицы M будем записывать величины $|b_i^*|^2$. k = 1

$$B = A \begin{pmatrix} 17 & 0 & 81 \\ 1 & 17 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} 17 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad M = \begin{pmatrix} 290 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

k = 2

 $k_{\max} = 2$. После нахождения вектора b_2 с помощью ортогонализации:

$$B = \begin{pmatrix} 17 & 0 & 81 \\ 1 & 17 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} 17 & -289/290 & 0 \\ 1 & 4913/290 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad M = \begin{pmatrix} 290 & 0 & 0 \\ 17/290 & 83811/290 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$\mu_{21} \leq \frac{1}{2} \\ \mu_{22} \geq (\frac{3}{4} - \mu_{21}^2) \\ \mu_{11}$$

$$\mu_{22} \ge (3/4 - \mu_{21})$$

 $k = 3$

 $k_{\max} = 3$. После нахождения вектора b_3^* ортогонализацией:

$$B = \begin{pmatrix} 17 & 0 & 81 \\ 1 & 17 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} 17 & -289/290 & 27/27937 \\ 1 & 4913/290 & -459/27937 \\ 0 & 1 & 7803/27937 \end{pmatrix}, \quad M = \begin{pmatrix} 290 & 0 & 0 \\ 17/290 & 83811/290 & 0 \\ 1377/290 & -7803/27937 & 2187/27937 \end{pmatrix}$$

 $\mu_{32} \leq 1/2$ $\mu_{33} < (3/4 - \mu_{32}^2) * \mu_{22}$. После вызова процедуры INTERCHANGE(3):

$$B = \begin{pmatrix} 17 & 81 & 0 \\ 1 & 0 & 17 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^* = \begin{pmatrix} 17 & \frac{81}{290} & 0 \\ 1 & -\frac{1377}{290} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 290 & 0 & 0 \\ \frac{1377}{290} & \frac{6561}{290} & 0 \\ \frac{17}{290} & -\frac{289}{81} & 1 \end{pmatrix}$$
$$k = 2$$

 $\mu_{21} > 1/2$. После вызова процедуры Size-Reduction(2,1):

$$B = \begin{pmatrix} 17 & -4 & 0\\ 1 & -5 & 17\\ 0 & 0 & 1 \end{pmatrix}, \quad B^* = \begin{pmatrix} 17 & \frac{81}{290} & 0\\ 1 & -\frac{1377}{290} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 290 & 0 & 0\\ -\frac{73}{290} & \frac{6561}{290} & 0\\ \frac{17}{290} & -\frac{289}{81} & 1 \end{pmatrix}$$

 $\mu_{22} < (3\!/_4 - \mu_{21}^2) * \mu_{11}.$ После вызова процедуры Interchange(2):

$$B = \begin{pmatrix} -4 & 17 & 0 \\ -5 & 1 & 17 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^* = \begin{pmatrix} -4 & 405/41 & 0 \\ -5 & -324/41 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 41 & 0 & 0 \\ -73/41 & \frac{6561}{41} & 0 \\ -85/41 & -68/81 & 1 \end{pmatrix}$$

k = 2

 $\mu_{21} > 1/2$. После вызова процедуры Size-Reduction(2, 1):

$$B = \begin{pmatrix} -4 & 9 & 0 \\ -5 & -9 & 17 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^* = \begin{pmatrix} -4 & \frac{405}{41} & 0 \\ -5 & -324/41 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 41 & 0 & 0 \\ \frac{9}{41} & \frac{6561}{41} & 0 \\ -\frac{85}{41} & -\frac{68}{81} & 1 \end{pmatrix}$$

$$\mu_{22} \ge (3/_4 - \mu_{21}^2) * \mu_{11}$$

k = 3

 $\mu_{32} > 1/2$. После вызова процедуры Size-Reduction(3,2):

$$B = \begin{pmatrix} -4 & 9 & 9 \\ -5 & -9 & 8 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^* = \begin{pmatrix} -4 & 405/41 & 0 \\ -5 & -324/41 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 41 & 0 & 0 \\ 9/41 & 6561/41 & 0 \\ -76/41 & 13/81 & 1 \end{pmatrix}$$

 $\mu_{33} < ({}^3\!\!/_4 - \mu_{32}^2) * \mu_{22}.$ После вызова процедуры INTERCHANGE(3):

$$B = \begin{pmatrix} -4 & 9 & 9 \\ -5 & 8 & -9 \\ 0 & 1 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} -4 & 65/41 & 27/14 \\ -5 & -52/41 & -54/35 \\ 0 & 1 & -351/70 \end{pmatrix}, \quad M = \begin{pmatrix} 41 & 0 & 0 \\ -76/41 & 210/41 & 0 \\ 9/41 & 351/70 & 2187/70 \end{pmatrix}$$
$$k = 2$$

 $\mu_{21} > 1/2$. После вызова процедуры Size-Reduction(2,1):

$$B = \begin{pmatrix} -4 & 1 & 9 \\ -5 & -2 & -9 \\ 0 & 1 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} -4 & 65/41 & 27/14 \\ -5 & -52/41 & -54/35 \\ 0 & 1 & -351/70 \end{pmatrix}, \quad M = \begin{pmatrix} 41 & 0 & 0 \\ 6/41 & 210/41 & 0 \\ 9/41 & 351/70 & 2187/70 \end{pmatrix}$$

 $\mu_{22} < (3/4 - \mu_{21}^2) * \mu_{11}$. После вызова процедуры INTERCHANGE(2):

$$B = \begin{pmatrix} 1 & -4 & 9 \\ -2 & -5 & -9 \\ 1 & 0 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} 1 & -5 & 27/14 \\ -2 & -3 & -54/35 \\ 1 & -1 & -351/70 \end{pmatrix}, \quad M = \begin{pmatrix} 6 & 0 & 0 \\ 1 & 35 & 0 \\ 9/2 & -18/35 & 2187/70 \end{pmatrix}$$

k=2

 $\mu_{21} > 1/_2$. После вызова процедуры Size-Reduction(2, 1):

$$B = \begin{pmatrix} 1 & -5 & 9 \\ -2 & -3 & -9 \\ 1 & -1 & 0 \end{pmatrix}, \quad B^* = \begin{pmatrix} 1 & -5 & 27/14 \\ -2 & -3 & -54/35 \\ 1 & -1 & -351/70 \end{pmatrix}, \quad M = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 35 & 0 \\ 9/2 & -18/35 & 2187/70 \end{pmatrix}$$

$$\mu_{22} \ge (3/4 - \mu_{21}^2) * \mu_{11}$$

k = 3

 $\mu_{32}>1/\!\!/_2$. После вызова процедуры Size-Reduction(3,2):

$$B = \begin{pmatrix} 1 & -5 & 4 \\ -2 & -3 & -12 \\ 1 & -1 & -1 \end{pmatrix}, \quad B^* = \begin{pmatrix} 1 & -5 & 27/14 \\ -2 & -3 & -54/35 \\ 1 & -1 & -351/70 \end{pmatrix}, \quad M = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 35 & 0 \\ 9/2 & 17/35 & 2187/70 \end{pmatrix}$$

 $\mu_{33} < (3/4 - \mu_{32}^2) * \mu_{22}.$ После вызова процедуры Size-Reduction(3, 1):

$$B = \begin{pmatrix} 1 & -5 & -1 \\ -2 & -3 & -2 \\ 1 & -1 & -6 \end{pmatrix}, \quad B^* = \begin{pmatrix} 1 & -5 & 27/14 \\ -2 & -3 & -54/35 \\ 1 & -1 & -351/70 \end{pmatrix}, \quad M = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 35 & 0 \\ -1/2 & 17/35 & 2187/70 \end{pmatrix}$$

Mатрица перехода:
$$H = \begin{pmatrix} -19 & 14 & 100 \\ 1 & -1 & -6 \\ 4 & -3 & -21 \end{pmatrix}$$

 $AH = B, \det H = 1$

13 Использование ARAGELI

Listing LLLReduction.cpp

#**include** < arageli/arageli.hpp>

```
using namespace std;
using namespace Arageli;
int main(int argc, char *argv[])
{
    typedef rational<> T;
    typedef matrix<T> MT;
    MT \ A = "((17,0,81),(1,17,0),(0,1,0),(5,1,12))";
    MT \ B, \ H;
    cout << endl << "Initial basis (in columns) A =" << endl;
    output_aligned(cout, A);
    B = A;
    if (Ill_reduction(B, H))
    {
        cout << endl << "Reduced bases (in columns) B =" << endl;</pre>
```

output_aligned(cout, B);

```
cout << endl << "Transformation matrix H =" << endl;
             output\_aligned(cout, H);
             cout \ll endl \ll "A*H = " \ll endl;
             output\_aligned(cout, A^*H);
             cout \ll endl \ll  "Check B == A*H? -> " \ll boolalpha \ll (B == A*H) \ll endl;
             cout \ll endl \ll "det(H) = " \ll det(H) \ll endl;
      }
      else
       {
             cout << "Columns in A don't form a basis" << endl;
             cout << "(they are linear dependent)" << endl;
       }
      return 0;
}
Initial basis (in columns) A =
||17 0 81||
||1 17 0 ||
||0 1 0 ||
||5 1 12||
Reduced bases (in columns) B =
||-4 13 0 ||
||-5 -4 17||
|| 0 0 1 ||
||-13 -8 1 ||
Transformation matrix H =
||-5 -4 0||
||0 0 1||
||1 1 0||
A*H =
||-4 13 0 ||
||-5 -4 17||
|| 0 0 1 ||
||-13 -8 1 ||
Check B == A*H? \rightarrow true
det(H) = 1
Listing LLLReductionInt.cpp
\#include < arageli/arageli.hpp>
using namespace std;
using namespace Arageli;
```

```
int main(int argc, char *argv[])
{
```

typedef *big_int* T; typedef matrix < T > MT; $MT \ A = ((17,0,81),(1,17,0),(0,1,0),(5,1,12))$ "; MT B, H;cout << endl << "Initial basis (in columns) A =" << endl; $output_aligned(cout, A);$ B = A;if $(lll_reduction_int(B, H))$ { cout << endl << "Reduced bases (in columns) B =" << endl; $output_aligned(cout, B);$ cout << endl << "Transformation matrix H =" << endl; $output_aligned(cout, H);$ cout << endl << "A*H = " << endl; $output_aligned(cout, A^*H);$ $cout \ll endl \ll$ "Check B == A*H? -> " << boolalpha << (B == A*H) << endl; $cout \ll endl \ll (det(H) =) \ll det(H) \ll endl;$ } \mathbf{else} { cout << "Columns in A don't form a basis" << endl; cout << "(they are linear dependent)" << endl; } return 0; Initial basis (in columns) A = ||17 0 81|| ||1 17 0 || ||0 1 0 || ||5 1 12|| Reduced bases (in columns) B =||-4 13 0 || ||-5 -4 17|| || 0 0 1 || ||-13 -8 1 || Transformation matrix H = ||-5 -4 0|| ||0 0 1|| ||1 1 0|| A*H =||-4 13 0 || ||-5 -4 17||

}

|| 0 0 1 || ||-13 -8 1 ||

Check B == $A*H? \rightarrow true$

det(H) = 1

14 Приложения

Приведенные базисы решетки имеют многочисленные приложения в компьютерной алгебре [13], теории чисел [12], целочисленном линейном программировании [3, 5, 6], криптографии [1] и др. В качестве примера рассмотрим задачу поиска рациональной зависимости набора вещественных чисел [10]. Пусть $\alpha_1, \ldots, \alpha_n$ — заданные вещественные числа. Требуется найти такие целые числа x_1, \ldots, x_n , что $x_1\alpha_1 + \ldots + x_n\alpha_n = 0$ или доказать, что таких чисел не существует.

Рассмотрим пример [8]. Предположим, мы знаем, что интеграл

$$V = \int_0^\infty \frac{\sqrt{x} \ln^5 x}{(1-x)^5} dx = -16.69947371922907049618724340073..$$

можно выразить в замкнутой форме как сумму с рациональными коэффициентами четных степеней числа π степени не выше 6. Вычислим с высокой точностью:

 $\pi^2 = 9.86960440108935861883449099988\ldots, \qquad \pi^4 = 97.40909103400243723644033268871\ldots,$

 $\pi^6 = 961.38919357530443703021944365242\dots$

Умножим имеющиеся значения V, π^2, π^4, π^6 на 10²⁹ и округлим результаты до ближайших целых. Найдем LLL-приведенный базис решетки, натянутой на столбцы матрицы A:

	(1)	0	0	0	-1669947371922907049618724340073
4 ⊤	0	1	0	0	986960440108935861883449099988
A =	0	0	1	0	9740909103400243723644033268871
	0	0	0	1	96138919357530443703021944365242

Пользуясь соответствующим программным обеспечением, получаем LLL-приведенный базис:

	/ -24	-2935612280	-4639618523	-825299928	
	-120	-542647822	1254353485	-8895056225	
B =	-140	-2670797711	3574983458	4530117612	
	15	225187175	-455689592	-382015972	
	(-118)	4346287373	-4631394987	3790400272 /	

Матрица перехода получается из *В* вычеркиванием последней строки. Первый столбец матрицы *В* дает коэффициенты линейной зависимости:

$$-24V - 120\pi^2 - 140\pi^4 + 15\pi^6 = 0.$$

Итак,

$$V = \int_0^\infty \frac{\sqrt{x} \ln^5 x}{(1-x)^5} dx = \frac{5}{24} \pi^2 (3\pi^3 - 28\pi^2 - 24).$$

Список литературы

- [1] Василенко О.Н. Теоретико-числовые алгоритмы в криптографии. М.: МЦНМО, 2003.
- [2] Касселс Дж. Введение в геометрию чисел. М.: Мир, 1965.
- [3] Схрейвер А. Теория линейного и целочисленного программирования. В 2-х тт. М.: Мир, 1991.

- [4] Чирков А.Ю., Шевченко В.Н. О нахождении последовательных минимумов целочисленной решетки и вектора решетки, ближайшего к данному // Кибернетика. 1987. №4. С. 46–49.
- [5] Шевченко В.Н. Качественные вопросы целочисленного программирования. М.: Физматлит, 1995.
- [6] Aardal K., Weismantel R., Wolsey L. Non-standard approaches to integer programming. 1999.
- [7] Ajtai M. The shortest vector problem in L₂ is NP-hard for randomized reductions // Electronic Colloquium for Computational Complexity. 1997. TR97-047.
- [8] Borwein J.M., Lisoněk P. Applications of Integer Relation Algorithms. Centre for Experimental and Constructive Mathematics Department of Mathematics and Statistics Simon Fraser University. 1997
- [9] Lenstra H.W. Integer programming with a fixed numbers of variables. Report 81-03. Dep. Math. Univ., Amsterdam. 1981.
- [10] Lenstra A.K., Lenstra H.W., Lovasz L. Factoring polynomials with rational coefficients // Math. Ann. 1982. V 261. P.515–534.
- [11] Arageli: A library for doing exact computation. Department of Computer Science. University of Nizhni Novgorod. http://www.unn.ru/cs/arageli.
- [12] Cohen H. A course in computational algebraic number theory. Berlin e.a.: Springer, 1993.
- [13] von zur Gathen J., Gerhard J. Modern Computer Algebra. Cambridge University Press, 1999.
- [14] LiDIA A library for computational number theory. TH Darmstadt/Universität des Saarlandes, Fachbereich Informatik, Institut für Theoretische Informatik. http://www.informatik.th-darmstadt.de/pub/TI/LiDIA.
- [15] Shoup V. NTL: A library for doing number theory. Department of Computer Science, University of Wisconsin-Medison. http://www.shoup.net.