Обоснование теста Миллера—Рабина для проверки простоты чисел

Записал Дм. Потапов

1. Свидетели простоты

Пусть $n \in N$, где n — нечётно, тогда n можно представить в виде:

$$n - 1 = 2^s t \tag{1}$$

где t — также нечётно.

Определение 1. Число 1 < b < n назовём свидетелем простоты числа n, если n — сильно псевдопростое по основанию b, т. е. $\mathrm{HOД}(b,n) = 1$ и выполняется

$$b^t \equiv 1 \pmod{n} \tag{2}$$

или

$$\exists k \in \{1, \dots, s-1\} : b^{2^k t} \equiv -1 \pmod{n}$$
(3)

Множество всех свиделелей простоты числа n обозначим B. Здесь и далее будем предполагать что n нечётно и не кратно трём.

2. Лжесвидетели

Определение 2. Число $a \in Z_n^*$ назовем лжеесвидетелем числа n если выполняется одно из следующих условий:

- 1) $a^{n-1} \not\equiv 1 \pmod{n}$
- 2) $a^k \not\equiv -1 \pmod n$, $\forall k \in N$ и для некоторого простого числа p, такого что n делится на него без остатка, порядок a по модулю p равен p-1 (т. е. $\forall k \in \{1,\dots,p-2\}: a^k \not\equiv 1 \pmod n$, $a^{p-1} \equiv 1 \pmod n$)

Множество всех лжесвиделелей числа n обозначим A.

3. Теорема Рабина

Лемма 1. Произведение лжессвидетеля и свидетеля простоты не является свидетелем простоты, т. е.

$$a \in A, b \in B \Rightarrow ab \pmod{n} \notin B \Rightarrow B \cap aB = \emptyset$$
 (4)

Доказательство. Рассмотрим два случая:

- 1) Пусть $a^{n-1} \not\equiv 1 \pmod{n}$, тогда: $(ab)^{n-1} \not\equiv b^{n-1} \pmod{n}$, но по определению свидетеля $b^{n-1} \equiv 1 \pmod{n}$, т. е. $(ab)^{n-1} \not\equiv 1 \pmod{n}$, следовательно $ab \pmod{n} \not\in B$
- 2) Пусть теперь $a^{n-1} \equiv 1 \pmod n$ и $\exists p$ простой делитель n и порядок a по модулю p равен p-1 и $a^k \not\equiv -1 \pmod n, \forall k \in N$

Воспользуемся формулой (1). Рассмотрим минимальное $k \in \{1,\ldots,s-1\}: a^{2^kt} \equiv 1 \pmod p$, так как p- делитель n, то $a^{2^kt} \equiv 1 \pmod p$, а так как a имеет порядок p-1 по модулю p, то 2^kt должно делиться на p-1 без остатка.

так как t — нечётно, а p-1 — чётно, то $2^kt \neq t \Rightarrow k \geq 1 \Rightarrow a^t \not\equiv 1 \pmod p \Rightarrow a^t \not\equiv 1 \pmod p$

Воспользуемся исходными данными: HOД(b,n)=1, и n делится на $p\Rightarrow HOД(b,p)=1$. Для всех $j:k\leq j\leq s, 2^jt$ делится на p-1, по малой теореме Ферма будем иметь:

$$b^{2^{j}t} \equiv 1 \pmod{p} \Rightarrow b^{2^{j}t} \not\equiv -1 \pmod{n} \tag{5}$$

$$b \in B \Rightarrow b^{2^{j}t} \equiv 1 \pmod{n}, \ \forall j : k \le j \le s \ i \ b^{2^{k-1}t} \equiv \pm 1 \pmod{n}$$
 (6)

Отсюда имеем:

$$(ab)^{2^{j}t} \equiv b^{2^{j}t} \equiv 1 \pmod{n}, \ \forall j : k \le j \le s \tag{7}$$

И

$$(ab)^{2^{k-1}t} \equiv \pm a^{2^{k-1}t} \not\equiv \pm 1 \pmod{n}$$
 (8)

(Так как
$$a^{2^{k-1}t} \not\equiv 1 \pmod{n}$$
 и $a^k \not\equiv -1 \pmod{n}, \forall k \in N$) (9)

Следовательно ab не является свидетелем простоты числа n.

Лемма 2. Пусть n — нечётное число, число n — простое u n делится на p^2 без остатка, тогда множество

$$\{1 + kn/p, k = 0, \dots, p - 1\}$$
(10)

образует подгруппу в Z_n^st порядка п и все элементы за исключением единицы имеют порядок n

Доказательство. Возьмем любые два элемента из данной подгруппы и перемножим их:

$$(1+kn/p)(1+k'n/p) = 1 + (k+k')n/p + kk'n^2/p^2 \equiv 1 + (k+k')n/p \pmod{n}$$
 (11)

т. е.

$$(1 + kn/p)(1 + k'n/p) \equiv 1 + (k + k')n/p \pmod{n}$$
(12)

Из этого равенства видно что данная подгруппа изоморфна циклической группе порядка n.

Лемма 3. Пусть $a,b\in Z_n^*, a\neq b,\ mor\partial a\ Ba\cap Bb=\emptyset\iff B\cap Bab^{-1}=\emptyset$

Доказательство. Очевидно. Отображение $x\mapsto xa$ задаёт взаимно однозначное соответствие между B и Ba. множества B и Ba равномощны и целиком содержатся в Z_n^* $(a\in Z_n^*)$. \square

Лемма 4. Пусть n делится на p^2 (p-npocmoe), тогда мощность множества B не $npe-bocxodum \frac{\phi(n)}{p}$.

Доказательство. Рассмотрим группу $G = \{1 + kn/p, k = 0, \dots, p-1\}$ из Леммы 2, так как n делится на p, следовательно n-1 на p не делится, следовательно $\forall a \in G(a \neq 1): a^{n-1} \neq 1 \pmod{n}$, что означает что a — лжесвидетель. По Лемме $1, B \cap Ba = \emptyset$, воспользуемся Леммой 3:

$$\forall g_1, g_2 \in G, g_1 \neq g_2 : B \cap Bg_2g_1^{-1} = \emptyset \ (a \text{ обозначили как } g_2g_1^{-1}) \Rightarrow Bg_1 \cap Bg_2 = \emptyset$$
 (13)

Все Bg содержатся в \mathbb{Z}_n^* , а значит и их объединение тоже, следовательно:

$$\Big|\bigcup_{g \in G} Bg\Big| \le |Z_n^*| = \phi(n) \tag{14}$$

Но все Bg попарно не пересекаются и равномощны, а значит:

$$\Big|\bigcup_{g \in G} Bg\Big| = p|B| \le \phi(n) \Rightarrow |B| \le \frac{\phi(n)}{p} \tag{15}$$

Лемма 5 (Теорема Рабина). Пусть n свободно от квадратов, тогда мощность множества B не превосходит $\frac{\phi(n)}{4}$.

Доказательство. Пусть p_1, p_2, \dots, p_k — все простые делители $n, (3 < p_k < \dots < p_2 < p_1, k \ge 1)$ 2). Пользуясь китайской теоремой об остатках и теоремой о существовании первообразного элемента выберем a_1 и a_2 $(a_1 \neq a_2)$ такие что

$$a_1 \equiv 1 \pmod{p_2}, \ a_1 \equiv 1 \pmod{p_3}, \ldots, \ a_1 \equiv 1 \pmod{p_k}, \ ord_{p_1}a_1 = p_1 - 1, a_2 \equiv 1 \pmod{p_1}, \ a_2 \equiv 1 \pmod{p_3}, \ldots, \ a_2 \equiv 1 \pmod{p_k}, \ ord_{p_2}a_2 = p_2 - 1.$$
 Bametum yto:

$$a_i \equiv 1 \pmod{\frac{n}{p_i}} \Rightarrow \forall j \in N : a_i^j \equiv 1 \pmod{\frac{n}{p_i}} \Rightarrow \forall j \in N : a_i^j \not\equiv -1 \pmod{n}$$
 (16)

Значит a_1, a_2 — лжесвидетели. Рассмотрим два случая:

k=2: если для некоторого $j: (a_1a_2)^j \equiv 1 \pmod n \Rightarrow (a_1a_2)^j \equiv 1 \pmod {p_1} \Rightarrow a_1^j \equiv 1$ $\pmod{p_1} \Rightarrow j$ делится на p_1-1 . n-1 не делится на p_1-1 (так как $n-1=p_2(p_1-1)+p_2-1, p_2 < p_1$), следовательно $(a_1a_2)^{n-1} \not\equiv 1 \pmod{n}$, а значит a_1a_2 — третий лжесвидетель. $k \geq 3: a_1a_2 \equiv 1 \pmod{\frac{n}{p_1p_2}} \Rightarrow \forall j \in N: (a_1a_2)^j \equiv 1 \pmod{\frac{n}{p_1p_2}} \Rightarrow \forall j \in N: (a_1a_2)^j \not\equiv -1$

 \pmod{n} , а значит a_1a_2 — снова третий лжесвидетель.

Итак, у нас есть три различных лжесвидетеля, применим лемму 3: группы B, Ba_1, Ba_2 и Ba_1a_2 попарно различны, равномощны, попарно не пересекаются и целиком содержатся в Z_n^* , а знатир:

$$|B \cup Ba_1 \cup Ba_2 \cup Ba_1a_2| = 4|B| \le Z_n^* = \phi(n)$$
(17)

т. е.
$$|B| \leq \frac{\phi(n)}{4}$$
 что и требовалось доказать.