

Integer program with bimodular matrix

S.I. Veselov ^{a,*}, A.J. Chirkov ^b

^a*N.I. Lobachevsky State University of Nizhni Novgorod 23 Prospekt Gagarina,
603950, Nizhni Novgorod, Russia*

^b*N.I. Lobachevsky State University of Nizhni Novgorod 23 Prospekt Gagarina,
603950, Nizhni Novgorod, Russia*

Abstract

Let A be an $m \times n$ integral matrix of rank n . We say that A is *bimodular* if the maximum of the absolute values of the $n \times n$ minors is at most 2. We give a polynomial time algorithm that finds an integer solution for system $Ax \leq b$. A polynomial time algorithm for integer program $\max\{cx : Ax \leq b\}$ is constructed proceeding on some assumptions.

Key words: integer vertex; integer solution.

We use the following notation: if A is a matrix, A_i denotes its i -th row, $a_{i,j}$ is the entry at row i and column j , $\Delta_k(A)$ is the maximum of the absolute values of the $k \times k$ minors of A ; if b is a vector then b_i denotes its i -th coordinate. Let $\lfloor \alpha \rfloor$ denote the largest integer less than or equal to α . The transpose of a matrix A is denoted by A^T . We say that $A \in \mathbb{Z}^{m \times n}$ is *bimodular* if $\text{rank } A = n$ and $\Delta_n(A) \leq 2$. By definition, put $S_Z = \text{conv}(S \cap \mathbb{Z}^n)$ for every $S \subseteq \mathbb{R}^n$. Let $M(A, b)$ be the set $\{x \in \mathbb{R}^n : Ax \leq b\}$.

Theorem 1 *If A is bimodular, $b \in \mathbb{Z}^n$, and $M(A, b)$ is full-dimensional, then $M_Z(A, b)$ is non-empty.*

Proof. We prove the statement by induction on n . If $n = 1$, then $M(A, b) \supseteq \{x \in \mathbb{R} : \beta - 1 \leq \alpha x \leq \beta\}$ for some $\beta \in \mathbb{Z}$ and $|\alpha| \in \{1, 2\}$. It is clear that either $\lfloor \frac{\beta}{\alpha} \rfloor$ or $\lfloor \frac{\beta-1}{\alpha} \rfloor$ belongs to $M_Z(A, b)$.

Now assume that $n > 1$. Since $\text{rank } A = n$ and $M(A, b) \neq \emptyset$, it follows that $M(A, b)$ has at least one vertex u (see e.g., [1], section 8.5.) If $u \in \mathbb{Z}^n$

* Corresponding author.

Email address: veselov@vmk.unn.ru (S.I. Veselov).

there is nothing to prove. Suppose $u \notin \mathbb{Z}^n$. Without loss of generality we can assume that u makes the first n inequalities into equalities that are $n - 1$ dimensional faces of $M(A, b)$. Let d be the greatest common divisor(GCD) of $a_{1,1}, a_{1,2}, \dots, a_{1,n}$. Denote by e_1 the first row of the identity matrix. We can find in polynomial time an unimodular matrix U such that $de_1 = A_1U$ (see e.g., [1], Corollary 5.3a.). If we replace x by Uy in $Ax \leq b$, we get

$$\begin{pmatrix} d & 0 \\ h & \bar{A} \end{pmatrix} \begin{pmatrix} y_1 \\ \bar{y} \end{pmatrix} \leq \begin{pmatrix} b_1 \\ \bar{b} \end{pmatrix}, \quad (1)$$

where h is a column vector, 0 is an all-zero row vector, \bar{A} is a bimodular matrix with rank $n - 1$, $\bar{b} = (b_2, \dots, b_m)^T$, $\bar{y} = (y_2, \dots, y_m)^T$.

Let T be the set of solutions of (1). We shall consider two cases.

First, let $b_1/d \in \mathbb{Z}$. The set $T \cap \{y : dy_1 = b_1\}$ has dimension $n - 1$ and $\Delta(\bar{A}) \leq 2/d$. By the induction hypothesis, there is an integral vector $\bar{y}^0 = (y_2^0, \dots, y_n^0)$ such that $\bar{A}\bar{y}^0 \leq \bar{b} - (b_1/d)h$. It follows that $U(b_1/d, y_2^0, \dots, y_n^0)^T \in M_Z(A, b)$.

Suppose secondly that $d = 2$ and b_1 is odd. If $2y_1$ is unbounded from below on T , then $2w_1 \leq b_1 - 1$ for some $w \in T$. Now assume that $2y_1$ is bounded from below on T . Since T is full-dimensional, we have $2v_1 = \min\{2y_1 : y \in T\} < b_1$, for some vertex v of T . Since $2v \in \mathbb{Z}^n$, it follows that $2v_1 \leq b_1 - 1$.

So the set of solutions of the system

$$\bar{A}\bar{y} \leq \bar{b} - \frac{b_1 - 1}{2}h \quad (2)$$

is non-empty. Since $\Delta(\bar{A}) = 1$, it follows that system (2) has an integer solution (y_2^0, \dots, y_n^0) . Therefore, $U^{-1}((b_1 - 1)/2, y_2^0, \dots, y_n^0)^T \in M_Z(A, b)$. \square

Note that this proof contains the effective algorithm that finds a point $x \in M_Z(A, b)$, where $M(A, b)$ is full dimensional(to find u we can use the algorithm from [2]). It is not difficult to see that x is the vertex of $M_Z(A, b)$.

If $M(A, b)$ is not full dimensional, then we can find i_1, i_2, \dots, i_s such that $\text{aff.hull } M(A, b) = \{x \mid A_{i_1}x = b_{i_1}, A_{i_2}x = b_{i_2}, \dots, A_{i_s}x = b_{i_s}\}$ ([1], Remark to Theorem 13.4). Next we can decide in polynomial time if $\{x \in \mathbb{Z}^n \mid A_{i_1}x = b_{i_1}, A_{i_2}x = b_{i_2}, \dots, A_{i_s}x = b_{i_s}\} = \emptyset$ or not ([1], Corollary 5.3b). If not, then we can find in polynomial time the linearly independent integral vectors h_0, h_1, \dots, h_s such that $M_Z(A, b) \subseteq \{h_0 + y_1h_1 + y_2h_2 + \dots + y_sh_s \mid y_1, y_2, \dots, y_s \in \mathbb{Z}\}$.

$\mathbb{Z}\}$ ([1], Corollary 5.3c). It is not difficult to see, that the initial problem can be reduced to a like problem in s unknowns.

From now on we assume that A is bimodular, $b \in \mathbb{Z}^m$, and we simplify notation by writing $M \equiv M(A, b)$. Denote by $V(P)$ the vertex set of the polyhedra P . Let us now examine the set $V(M_Z)$.

Let u be a vertex of M , $I(u) = \{i : \sum_{j=1}^n a_{ij}u_j = b_i\}$, $N(u) = \{x : \sum_{j=1}^n a_{ij}x_j \leq b_i, i \in I(u)\}$.

Theorem 2 *Each vertex of $N_Z(u)$ lies on an edge of M .*

Proof. If $u \in \mathbb{Z}^n$ then u is the unique vertex of $N_Z(u)$ and the theorem holds.

Now assume that $u \notin \mathbb{Z}^n$. Let y be a vertex of $N_Z(u)$. Denote by A' the matrix obtained from A by omitting all rows $k \notin I(u)$. Let C be the cone $\{x : A'x \leq 0\}$. Since $A'y \leq A'u$, and since $A'y \neq A'u$ it follows that there exists an extremal ray r of C such that $\sum_{j=1}^n a_{kj}r_j = 0$ for all $k \in \{i \in I(u) : \sum_{j=1}^n a_{ij}y_j = b_i\}$. It is known that there exists an $(n-1) \times n$ submatrix H of A' such that $\text{rank } H = n-1$ and $Hz = 0$ [1]. Therefore, we can choose $r_j = \frac{1}{2}\sigma \det H_j$ ($j = 1, 2, \dots, n$), where H_j is obtained from H by omitting the j -th column, $\sigma = \pm 1$. The matrix A is bimodular therefore

$$|\sum_{j=1}^n a_{ij}r_j| \leq 1 \text{ for all } i \in \{1, 2, \dots, m\}. \quad (3)$$

Let's assume that $r \in \mathbb{Z}^n$. Now we show that $y \pm r \in N_Z(u)$:

- (a) for $i \in I(u)$ such that $\sum_{j=1}^n a_{ij}y_j = b_i$, we have $\sum_{j=1}^n a_{ij}r_j = 0$;
- (b) for $i \in I(u)$ such that $\sum_{j=1}^n a_{ij}y_j < b_i$, from (3) we have $\sum_{j=1}^n a_{ij}(y_j \pm r_j) \leq b_i$.

Hence $y = \frac{1}{2}(y + r) + \frac{1}{2}(y - r)$, contradicting the fact that y is a vertex.

Thus we have $r \notin \mathbb{Z}^n$. Let B be an $n \times n$ submatrix of A' with nonzero determinant and let L be the lattice generated by the columns of the matrix B^{-1} . Note that $|\det B| = 2$ (otherwise $u \in \mathbb{Z}^n$). Since $\det L = 1/2$, the index of sublattice \mathbb{Z}^n in L is equal to 2. Therefore, L is divided into 2 classes: \mathbb{Z}^n and $u + \mathbb{Z}^n$. Since $r \in u + \mathbb{Z}^n$, it follows that $u + r \in \mathbb{Z}^n$. Let us consider the vectors $p = u + r$ and $q = 2y - p$. From (3) it follows that $p \in M_Z$. For $i \in I(u)$ we have $\sum_{j=1}^n a_{ij}q_j = 2\sum_{j=1}^n a_{ij}y_j - \sum_{j=1}^n a_{ij}u_j - \sum_{j=1}^n a_{ij}r_j \leq \sum_{j=1}^n a_{ij}y_j - \sum_{j=1}^n a_{ij}r_j \leq b_i$ hence $q \in N_Z(u)$. Since y is a vertex and $y = \frac{1}{2}p + \frac{1}{2}q$, it follows that

$$y = p = u + r. \quad (4)$$

This implies that y belongs to an edge of M . \square

Corollary 3 $V(M_Z) = \bigcup_{u \in V(M)} V(N_Z(u))$.

We now consider the problem of finding the maximum of the linear function $f = \sum_j c_j x_j$ over M_Z .

Corollary 4 *If f achieves its maximum at vertex u of M , then $\max_{x \in M_Z} f$ is achieved at some $y \in N_Z(u)$.*

Theorem 5 *If each $n \times n$ minor of A is not 0, then $\max_{x \in M_Z} f$ can be found in polynomial time.*

Proof. With Khachiyan's method, we can find an optimum solution u for $\max_{x \in M} f$ in polynomial time. Let $\max_{x \in N_Z(u)} f$ be attained by vertex y in $N_Z(u)$. It follows from (4) that y belongs to one of the hyperplanes $\pi_1 = \{x : A_e x = b_e\}$ or $\pi_2 = \{x : A_e x = b_e - 1\}$, where $e \in I(u)$. We now prove that each vertex v of $N(u) \cap \pi_2$ remakes exactly n inequalities into equalities. Suppose to the contrary that there exists $k_1, k_2, \dots, k_n \in I(u) \setminus \{e\}$ for which $A_{k_i} v = b_{k_i}$ ($i = 1, 2, \dots, n$). Since $\det(A_{k_1}^T A_{k_2}^T \dots A_{k_n}^T) \neq 0$, it follows $v = u$. But this contradicts $A_e v = A_e u - 1$. So exactly n edges come out from v . Hence we can find in polynomial time a solution for $\max_{x \in N_Z(u) \cap \pi_2} f$. In order to find $\max_{x \in N_Z(u) \cap \pi_1} f$, we can solve the initial type problem with a lesser number of variables. \square

Acknowledgements

The authors thank the anonymous referees for their useful remarks, in particular for the suggestion by one of referees to consider the not full dimensional polyhedra.

References

- [1] A. Schrijver, Theory of Linear and Integer Programming, WileyInterscience series in discrete mathematics. John Wiley & Sons, 1998.
- [2] L.G.Khachiyan, Polynomial algorithms in the linear programming, U.S.S.R. Computational Mathematics and Mathematical Physics 20(1)(1980) 53-72.