Integer program with bimodular matrix
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Abstract

Let A be an m x n integral matrix of rank n. We say that A is bimodular if the
maximum of the absolute values of the n X n minors is at most 2. We give a polyno-
mial time algorithm that finds an integer solution for system Ax < b. A polynomial
time algorithm for integer program maxz{cx : Az < b} is constructed proceeding
on some assumptions.
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We use the following notation: if A is a matrix, A; denotes its i - th row, a; ; is
the entry at row ¢ and column 7, Ag(A) is the maximum of the absolute values
of the k£ x k minors of A; if b is a vector then b; denotes its ¢ - th coordinate.
Let |a] denote the largest integer less than or equal to a.. The transpose of a
matrix A is denoted by AT. We say that A € Z™*" is bimodular if rank A = n
and A, (A) < 2. By definition, put Sz = conv(S NZ") for every S C R". Let
M(A,b) be the set {xr € R": Az < b}.

Theorem 1 If A is bimodular, b € Z™, and M(A,b) is full-dimensional, then
Mz (A, b) is non-empty.

Proof. We prove the statement by induction on n. If n = 1, then M (A,b) D
{reR: f—1<ar <} for some f € Z and |a| € {1,2}. It is clear that
either {gJ or {%J belongs to Mz(A,b).

Now assume that n > 1. Since rank A = n and M(A,b) # 0, it follows
that M(A,b) has at least one vertex u (see e.g., [1], section 8.5.) If u € Z"
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there is nothing to prove. Suppose u ¢ Z™. Without loss of generality we can
assume that v makes the first n inequalities into equalities that are n — 1
dimensional faces of M (A,b). Let d be the greatest common divisor(GCD) of
ay 1,a2,...,a1 ,. Denote by e; the first row of the identity matrix. We can find
in polynomial time an unimodular matrix U such that de; = AU ( see e.g.,
[1], Corollary 5.3a. ). If we replace = by Uy in Az < b, we get

do Y1 by

_ RS EE (1)
h A ] b

where h is a column vector, 0 is an all-zero row vector, A is a bimodular matrix
with rank n — 1, b = (by, .., by)T, T = (Y2, ., Ym) ™.

Let T be the set of solutions of (1). We shall consider two cases.

First, let by /d € Z. The set TN{y : dy; = b;} has dimension n—1 and A(A) <
2/d. By the induction hypothesis, there is an integral vector 7 = (49, ..., y)
such that Ay® < b — (by/d)h. It follows that U(by/d, 49, ....,y°)T € Mz(A,b).

Suppose secondly that d = 2 and b; is odd. If 2y; is unbounded from below on
T, then 2w, < by — 1 for some w € T. Now assume that 2y; is bounded from
below on T'. Since T is full-dimensional, we have 2v; = min{2y; : y € T} < by,
for some vertex v of T'. Since 2v € Z", it follows that 2v; < b; — 1.

So the set of solutions of the system

by —1
2

Aj<b-— h (2)

is non-empty. Since A(A) = 1, it follows that system (2) has an integer solution
(Y3, -, yn). Therefore, U ((by — 1)/2,48, ..., yn)" € Mz(A,b). O

Note that this proof contains the effective algorithm that finds a point x €
Myz(A,b), where M (A, ) is full dimensional(to find u we can use the algorithm
from [2]). It is not difficult to see that x is the vertex of Mz (A,b).

If M(A,b) is not full dimensional, then we can find iy,1s,...,is such that
aff.hull M(A,b) = {z| Az = by, Ai,x = by, ... Ai.x = b, }([1], Remark
to Theorem 13.4). Next we can decide in polynomial time if {x € Z"| A;,xz =
by, Apx = by, ... Az = b} = 0 or not([1], Corollary 5.3b). If not,
then we can find in polynomial time the linearly independent integral vectors
h(), hl, ceey hs such that Mz(A, b) - {ho + y1h1 + yghg —+ ...+ yshslyh Y2, ..., Ys €



Z}([1], Corollary 5.3c). It is not difficult to see, that the initial problem can
be reduced to a like problem in s unknowns.

From now on we assume that A is bimodular, b € Z™, and we simplify notation
by writing M = M (A,b). Denote by V(P) the vertex set of the polyhedra P.
Let us now examine the set V' (My).

Let u be a vertex of M, I(u) = {i : 37_; ajju; = bi}, N(u) = {z : X, ai;r; <

Theorem 2 Fach vertex of Nz(u) lies on an edge of M.

Proof. If u € Z" then u is the unique vertex of Nz(u) and the theorem holds.

Now assume that u ¢ Z". Let y be a vertex of Nz(u). Denote by A’ the
matrix obtained from A by omitting all rows k ¢ I(u). Let C' be the cone
{z: Az <0}. Since A’y < A'u, and since A’y # A'u it follows that there
exists an extremal ray r of C' such that >7_; ay;r; = 0 for all k € {i € I(u) :
iy iy = b;}. It is known that there exists an (n — 1) x n submatrix H
of A’ such that rank H = n — 1 and Hr = 0 [1]. Therefore, we can choose
r; = %adet H; (j =1,2,...,n), where H; is obtained from H by omitting the
j-th column, o = £+1. The matrix A is bimodular therefore

S ayrl <1 for all i € {1,2, .. m}. @)

=1

Let’s assume that r € Z". Now we show that y + 17 € Nz(u):
(a) for i € I(u) such that 3% a;;y; = b;, we have 3% a;r; = 0;

(b) for i € I(u) such that 3% a;;y; < by, from (3) we have 377 a;(y; £7;) <
b;.

Hence y = 3(y + ) + 3(y — ), contradicting the fact that y is a vertex.

Thus we have r ¢ Z". Let B be an n X n submatrix of A’ with nonzero
determinant and let L be the lattice generated by the columns of the matrix
B~!. Note that |detB| = 2 (otherwise u € Z™). Since det L = 1/2, the index of
sublattice Z™ in L is equal to 2. Therefore, L is divided into 2 classes: Z™ and
u+2". Since r € u+ 7", it follows that u+r € Z". Let us consider the vectors
p = u+r and ¢ = 2y—p. From (3) it follows that p € M. For i € I(u) we have
D=1 iy = 230500 gl — i Qigthy — 25y Ty S 3 Qi — 2oy ATy <
b; hence ¢ € Nz(u). Since y is a vertex and y = %p + %q, it follows that



This implies that y belongs to an edge of M. O

Corollary 3 V(Mz) = U V(Nz(u)).
ueV (M)

We now consider the problem of finding the maximum of the linear function
[ =22 cjxj over My.
J

Corollary 4 If f achieves its maximum at verter u of M, then max f s
zeMyz

achieved at some y € Ny (u).

Theorem 5 If each n x n minor of A is not 0, then max f can be found in
zeMz

polynomial time.

Proof. With Khachiyan’s method, we can find an optimum solution u for

maj\sz in polynomial time. Let Iglvzm(c : f be attained by vertex y in Nz(u). It
xe rENZ(u

follows from (4) that y belongs to one of the hyperplanes 7 = {z : A.x = b.}
or mp = {x: A.xr = b, — 1}, where e € I(u). We now prove that each vertex
v of N(u) N7y remakes exactly n inequalities into equalities. Suppose to the
contrary that there exists kq, ko, ..., k, € I(u) \ {e} for which Ay v = by, (i =
1,2,...,n). Since det (AL, AL, ... AL ) # 0, it follows v = u. But this contradicts
Aov = A.u — 1. So exactly n edges come out from v. Hence we can find in

polynomial time a solution for max f. In order to find max f, we
€Nz (u)Nme €Nz (u)Nmy

can solve the initial type problem with a lesser number of variables. O
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