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Abstract

Let A be an m × n integral matrix of rank n. We say that A is bimodular if the
maximum of the absolute values of the n×n minors is at most 2. We give a polyno-
mial time algorithm that finds an integer solution for system Ax ≤ b. A polynomial
time algorithm for integer program max{cx : Ax ≤ b} is constructed proceeding
on some assumptions.
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We use the following notation: if A is a matrix, Ai denotes its i - th row, ai,j is
the entry at row i and column j, ∆k(A) is the maximum of the absolute values
of the k × k minors of A; if b is a vector then bi denotes its i - th coordinate.
Let bαc denote the largest integer less than or equal to α. The transpose of a
matrix A is denoted by AT . We say that A ∈ Zm×n is bimodular if rank A = n
and ∆n(A) ≤ 2. By definition, put SZ = conv(S ∩ Zn) for every S ⊆ Rn. Let
M(A, b) be the set {x ∈ Rn : Ax ≤ b}.

Theorem 1 If A is bimodular, b ∈ Zn, and M(A, b) is full-dimensional, then
MZ(A, b) is non-empty.

Proof. We prove the statement by induction on n. If n = 1, then M(A, b) ⊇
{x ∈ R : β − 1 ≤ αx ≤ β} for some β ∈ Z and |α| ∈ {1, 2}. It is clear that

either
⌊
β
α

⌋
or

⌊
β−1
α

⌋
belongs to MZ(A, b).

Now assume that n > 1. Since rank A = n and M(A, b) 6= ∅, it follows
that M(A, b) has at least one vertex u (see e.g., [1], section 8.5.) If u ∈ Zn
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there is nothing to prove. Suppose u /∈ Zn. Without loss of generality we can
assume that u makes the first n inequalities into equalities that are n − 1
dimensional faces of M(A, b). Let d be the greatest common divisor(GCD) of
a1,1, a1,2, ..., a1,n. Denote by e1 the first row of the identity matrix. We can find
in polynomial time an unimodular matrix U such that de1 = A1U ( see e.g.,
[1], Corollary 5.3a. ). If we replace x by Uy in Ax ≤ b, we get

 d 0

h Ā


 y1
ȳ

 ≤
 b1
b̄

 , (1)

where h is a column vector, 0 is an all-zero row vector, Ā is a bimodular matrix
with rank n− 1, b̄ = (b2, .., bm)T , ȳ = (y2, .., ym)T .

Let T be the set of solutions of (1). We shall consider two cases.

First, let b1/d ∈ Z. The set T ∩{y : dy1 = b1} has dimension n−1 and ∆(Ā) ≤
2/d. By the induction hypothesis, there is an integral vector ȳ0 = (y02, ..., y

0
n)

such that Āȳ0 ≤ b̄− (b1/d)h. It follows that U(b1/d, y
0
2, ..., y

0
n)T ∈MZ(A, b).

Suppose secondly that d = 2 and b1 is odd. If 2y1 is unbounded from below on
T , then 2w1 ≤ b1 − 1 for some w ∈ T . Now assume that 2y1 is bounded from
below on T . Since T is full-dimensional, we have 2v1 = min{2y1 : y ∈ T} < b1,
for some vertex v of T. Since 2v ∈ Zn, it follows that 2v1 ≤ b1 − 1.

So the set of solutions of the system

Āȳ ≤ b̄− b1 − 1

2
h (2)

is non-empty. Since ∆(Ā) = 1, it follows that system (2) has an integer solution
(y02, ..., y

0
n). Therefore, U−1((b1 − 1)/2, y02, ..., y

0
n)T ∈MZ(A, b). 2

Note that this proof contains the effective algorithm that finds a point x ∈
MZ(A, b), where M(A, b) is full dimensional(to find u we can use the algorithm
from [2]). It is not difficult to see that x is the vertex of MZ(A, b).

If M(A, b) is not full dimensional, then we can find i1, i2, ..., is such that
aff.hull M(A, b) = {x| Ai1x = bi1 , Ai2x = bi2 , ... Aisx = bis}([1], Remark
to Theorem 13.4). Next we can decide in polynomial time if {x ∈ Zn| Ai1x =
bi1 , Ai2x = bi2 , ... Aisx = bis} = ∅ or not([1], Corollary 5.3b). If not,
then we can find in polynomial time the linearly independent integral vectors
h0, h1, ..., hs such that MZ(A, b) ⊆ {h0 + y1h1 + y2h2 + ...+ yshs|y1, y2, ..., ys ∈
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Z}([1], Corollary 5.3c). It is not difficult to see, that the initial problem can
be reduced to a like problem in s unknowns.

From now on we assume that A is bimodular, b ∈ Zm, and we simplify notation
by writing M ≡M(A, b). Denote by V (P ) the vertex set of the polyhedra P.
Let us now examine the set V (MZ).

Let u be a vertex of M , I(u) = {i :
∑n
j=1 aijuj = bi}, N(u) = {x :

∑n
j=1 aijxj ≤

bi, i ∈ I(u)}.

Theorem 2 Each vertex of NZ(u) lies on an edge of M .

Proof. If u ∈ Zn then u is the unique vertex of NZ(u) and the theorem holds.

Now assume that u /∈ Zn. Let y be a vertex of NZ(u). Denote by A′ the
matrix obtained from A by omitting all rows k /∈ I(u). Let C be the cone
{x : A′x ≤ 0}. Since A′y ≤ A′u, and since A′y 6= A′u it follows that there
exists an extremal ray r of C such that

∑n
j=1 akjrj = 0 for all k ∈ {i ∈ I(u) :∑n

j=1 aijyj = bi}. It is known that there exists an (n − 1) × n submatrix H
of A′ such that rank H = n − 1 and Hr = 0 [1]. Therefore, we can choose
rj = 1

2
σdet Hj (j = 1, 2, ..., n), where Hj is obtained from H by omitting the

j-th column, σ = ±1. The matrix A is bimodular therefore

|
n∑
j=1

aijrj| ≤ 1 for all i ∈ {1, 2, ...,m}. (3)

Let’s assume that r ∈ Zn. Now we show that y ± r ∈ NZ(u):

(a) for i ∈ I(u) such that
∑n
j=1 aijyj = bi, we have

∑n
j=1 aijrj = 0;

(b) for i ∈ I(u) such that
∑n
j=1 aijyj < bi, from (3) we have

∑n
j=1 aij(yj±rj) ≤

bi.

Hence y = 1
2
(y + r) + 1

2
(y − r), contradicting the fact that y is a vertex.

Thus we have r /∈ Zn. Let B be an n × n submatrix of A′ with nonzero
determinant and let L be the lattice generated by the columns of the matrix
B−1. Note that |detB| = 2 (otherwise u ∈ Zn). Since detL = 1/2, the index of
sublattice Zn in L is equal to 2. Therefore, L is divided into 2 classes: Zn and
u+Zn. Since r ∈ u+Zn, it follows that u+r ∈ Zn. Let us consider the vectors
p = u+r and q = 2y−p. From (3) it follows that p ∈MZ . For i ∈ I(u) we have∑n
j=1 aijqj = 2

∑n
j=1 aijyj−

∑n
j=1 aijuj−

∑n
j=1 aijrj ≤

∑n
j=1 aijyj−

∑n
j=1 aijrj ≤

bi hence q ∈ NZ(u). Since y is a vertex and y = 1
2
p+ 1

2
q, it follows that

y = p = u+ r. (4)
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This implies that y belongs to an edge of M . 2

Corollary 3 V (MZ) =
⋃

u∈V (M)
V (NZ(u)).

We now consider the problem of finding the maximum of the linear function
f =

∑
j
cjxj over MZ .

Corollary 4 If f achieves its maximum at vertex u of M , then max
x∈MZ

f is

achieved at some y ∈ NZ(u).

Theorem 5 If each n × n minor of A is not 0, then max
x∈MZ

f can be found in

polynomial time.

Proof. With Khachiyan’s method, we can find an optimum solution u for
max
x∈M

f in polynomial time. Let max
x∈NZ(u)

f be attained by vertex y in NZ(u). It

follows from (4) that y belongs to one of the hyperplanes π1 = {x : Aex = be}
or π2 = {x : Aex = be − 1}, where e ∈ I(u). We now prove that each vertex
v of N(u) ∩ π2 remakes exactly n inequalities into equalities. Suppose to the
contrary that there exists k1, k2, ..., kn ∈ I(u) \ {e} for which Akiv = bki (i =
1, 2, ..., n). Since det(ATk1 A

T
k2
... ATkn) 6= 0, it follows v = u. But this contradicts

Aev = Aeu − 1. So exactly n edges come out from v. Hence we can find in
polynomial time a solution for max

x∈NZ(u)∩π2
f . In order to find max

x∈NZ(u)∩π1
f , we

can solve the initial type problem with a lesser number of variables. 2
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