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Аннотация. Показано, что базисные матрицы у взаимно ортого-
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Введение

Под решёткой далее понимается подгруппа аддитивной группы Z
n.

Решётка с образующими h1, h2, . . . , hk обозначается L(h1, h2, . . . , hk). Ли-
нейно независимый набор образующих называется базисом. Матрица, со-
ставленная из базисных вектор-столбцов, называется базисной. Ортого-

нальной к решётке Λ ⊂ Z
n называется решётка Λ⊥ = {y ∈ Z

n : xT y =
0 ∀x ∈ Λ}. Ортогональные решётки встречаются, например, в двойствен-
ном описании множества допустимых решений задачи целочисленного
линейного программирования: множество S = {x ∈ Z

n | AT x = a, x > 0}
можно представить в виде S = {x ∈ Z

n | x = By + b > 0, y ∈ Z
n−r}, где

r = rank A, b ∈ S, B — базисная матрица решётки L(A)⊥.
Для всякого подмножества I ⊆ N = {1, 2, . . . , n} обозначаем через

σ(I) сумму его элементов и полагаем I = N \ I. Для произвольной мат-
рицы M выражение M(I) обозначает подматрицу, состоящую из строк
с номерами из I, M(I, J) — подматрицу, состоящую из строк с номера-
ми из I и столбцов с номерами из J. Известно [4], что миноры взаимно
обратных матриц U и V связаны равенством

detV · detU(I, J) = (−1)σ(I)+σ(J) detV (J, I).

Из этого равенства можно вывести следующий результат [3] (см. так-
же [6]): если A ∈ Z

n×m, rank A = m, B — базисная матрица решётки
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L(A)⊥, то для всякого I ⊂ N, |I| = m, справедлива формула

|det A(I)| = ∆m(A)|det B(I)|.

Из неё следует, что для базисных матриц A и B взаимно ортогональных
решёток выполняется равенство

|det A(I)| = |det B(I)|. (1)

Этот факт использован в [3] для оценки длины минимального вектора
ортогональной решётки (из (1) следует, что равны объёмы фундамен-
тальных параллелепипедов ортогональных решёток), в [1] — для оценки
компонент целого решения системы линейных неравенств, в [2] — для
оценки числа вершин выпуклой оболочки множества целых решений
системы уравнений и неравенств. В [8] независимо установлено равен-
ство объёмов фундаментальных параллелепипедов взаимно ортогональ-
ных решёток. В [7] ортогональные решётки применялись для изучения
транспортных многогранников.

В этой статье мы описываем более глубокую, по сравнению с фор-
мулой (1), связь между минорными характеристиками базисов взаимно
ортогональных целочисленных решёток.

Обозначение diag(α1, α2, .., αm) используем для матрицы, у которой
меньший из размеров равен m, для каждого i ∈ {1, . . . ,m} элемент, рас-
положенный на пересечении i- го столбца и i-й строки равен αi, а осталь-
ные элементы равны нулю. Нормальной диагональной формой матрицы
M с целыми элементами называется матрица

НДФ(M) = diag(d1(M), . . . , dr(M), 0, . . . , 0),

где r = rank M и di(M) делится на di−1(M) для каждого i ∈ {2, 3, . . . , r}.
Ненулевые элементы в НДФ называются инвариантными множителя-

ми. Вот примеры использования нормальной диагональной формы.

1. Условием разрешимости в целых числах системы линейных уравне-
ний Ax = b с целыми коэффициентами является равенство
НДФ(A) =НДФ(A | b).

2. Если A ∈ Z
n×m, rank A = m, b ∈ Z

n, то знаменатели координат
вершин множества решений системы линейных неравенств Ax 6

b не превышают max dm(A), где максимум выбирается среди всех
подматриц A матрицы A.
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3. Если A ∈ Z
n×n, rank A = n, то число вершин у выпуклой оболочки

множества {x ∈ Z
n : Ax 6 b} не превышает (log2 dn(A)+1)n−1. Эта

оценка сильнее оценки (log2 |A| + 1)n−1 из [6] и ранее не публико-
валась, хотя является результатом непосредственного применения
подхода, изложенного в [6].

Мы установим связь между нормальными диагональными формами
матриц A(J) и B(J) для произвольного J ⊂ N .

Ещё несколько обозначений и определений. Пусть Ek — единичная
матрица порядка k. Нулевую матрицу всюду обозначаем буквой O, раз-
мер матрицы определяется из контекста. ∆i(M) обозначает наибольший
общий делитель всех миноров i-го порядка матрицы M . Элементар-

ными делителями матрицы M называются все отличные от 1 степени
p

k1,1

1 , . . . , p
ks,r
s из разложений

di(M) = p
k1,i

1 · . . . · pks,i
s (i = 1, 2, . . . , r = rank M)

инвариантных множителей в произведение степеней простых чисел. Уни-

модулярной называется целочисленная квадратная матрица с определи-
телем, равным ±1.

1. Основной результат

Лемма. Пусть A ∈ Z
n×m, B ∈ Z

n×(n−m), ∆m(A) = ∆n−m(B) = 1,
AT B = O, |I| = s, l = min{s,m}. Если D =НДФ(A(I)) = diag(d1, . . . , dl),
то

НДФ(B(I)) =

{
diag(1, . . . , 1, d1, . . . , dl) при m + s 6 n,
diag(dm+s−n+1, . . . , dl) при m + s > n.

Доказательство. Не уменьшая общности, рассмотрим лишь
I = {1, 2, . . . , s}. Предположим, что m + s 6 n. Пусть P, Q1, Q2 —
унимодулярные матрицы такие, что D = Q1A(I)P и Q2A(I)P = (U O)T ,
где U = (ui,j) — верхне-треугольная (m × m)-матрица (по поводу суще-
ствования перечисленных матриц см. [1]). Предположим, что нашлось
k такое, что НОД(dk , uk,k) 6= 1. Тогда отличен от 1 наибольший общий
делитель миноров (m − k + 1)-го порядка, расположенных в столбцах
k, . . . ,m матрицы G = (D U O)T , поэтому ∆m(G) 6= 1, следователь-
но, ∆m(A) 6= 1, а это противоречит условию леммы. Пусть r = rank D,
D1 = diag(d1, d2, . . . , dr). Представим матрицу G в виде

G =

(
D1 O U1 U2 O
O O O U3 O

)T

.



28 С.И.Веселов, В.Н.Шевченко28 С.И.Веселов, В.Н.Шевченко28 С.И.Веселов, В.Н.Шевченко

Рассмотрим матрицу

H =




D−1
1 U1D1 O −D1 O O

O Es−r O O O
O O O O En−m−s




T

.

Нетрудно видеть, что GT H = O. Поскольку наибольший общий делитель
миноров ∣∣∣∣∣∣

D−1
1 U1D1 O O

O Es−r O
O O En−m−s

∣∣∣∣∣∣
= u1,1 · . . . · ur,r,

∣∣∣∣∣∣

O −D1 O
Es−r O O

O O En−m−s

∣∣∣∣∣∣
= (−1)rsd1 · . . . · dr

равен 1, то ∆n−m(H) = 1. Следовательно, H — базисная матрица решётки
L(G)⊥, (H(I)T Q1 H(I)QT

2 )T — базисная матрица решётки L(AP )⊥ =
L(A)⊥. Так как для всякой матрицы M справедливы формулы d1(M) =
∆1(M), di(M) = ∆i(M)/∆i−1(M) при i > 2 (см., например, [5]), то
НДФ(B(I)) = НДФ(H(I)) = diag(1, . . . , 1, d1, . . . , dl). Случай s + m > n
симметричен уже рассмотренному.

Следствие. Если P — унимодулярная (n × n)-матрица и I, J ⊂ N,
то наборы ненулевых элементов в НДФ(P (I, J)) и НДФ(P−1(J, I)) могут

отличаться лишь количеством единиц.

Доказательство. Достаточно заметить, что решётки L(P−1(N, I))
и L(P T (I,N)) взаимно ортогональны.

Теорема. Базисные матрицы взаимно ортогональных решёток име-

ют одинаковые наборы элементарных делителей.

Доказательство. Утверждение непосредственно вытекает из лем-
мы.
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