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Abstract—Polyhedrons in which every integral point belonging to them is a vertex are studied.

1. INTRODUCTION

A set M of points of an integral lattice is said to be simple if a polytope with vertices in M
(every point of M must be vertex of this polytope) does not contain other points of the integral
lattice. The power of a simple set in an n-dimensional integral lattice is not greater than 2n(see [1]).

A simple set M is said to be maximal if it ceases to be simple on addition of a point of the
integral lattice to it. Every simple set of power 2n in an n-dimensional integral lattice is maximal.
The converse may also hold, but its proof for the general case is not known to us. Its proof is
known only for n = 2 and 3.

Definition 1. Parallel hyperplanes, each containing points of an integral lattice, are said to be
adjacent if there are no points of the lattice between them.

Let M1 and M2 be simple sets lying in adjacent planes. Obviously, M1 ∪M2 is also a simple
set. Below we shall show that every simple set in a three-dimensional space can be obtained in this
way. A similar assertion does not hold for the four-dimensional space. The set of points (0, 0, 0, 0),
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (−5,−12,−19, 29) cannot located on adjacent planes.

On the other hand, as is known [1], if a convex set M does not contain points of a lattice in
its interior, then the maximal number of adjacent planes containing the intersection of M and an
integral lattice is bounded above by a constant, depending on the dimension of the space.

Hence every simple set lies in not more than cn parallel hyperplanes, where cn is a constant
dependent only on n. In other words, if a set of points x1, x2, . . . , xk is simple, then the system of
inequalities 0 ≤ y(x1 − xi) ≤ cn, where i = 2, . . . , k, has a nonzero integral solution.

The parameter cn is vital in application. In the sequel, we shall show that c3 = 2.

2. THE STRUCTURE OF A SIMPLE SET OF A THREE-DIMENSIONAL LATTICE

First let us study the structure of the maximal simple set of a two-dimensional integral lattice.
Every simple set of power less than four in Z2 is not maximal. To verify this assertion, let

us consider a simple set consisting of three points. Clearly, these points do not lie on a straight
line. Let us denote these points by x1, x2, and x3. Consider the parallelogram with vertices at
x1, x2, x3, x3 + x2 − x1. If a point y ∈ Z2 is contained in this parallelogram, then it belongs to
the triangle with vertices at x2, x3, x2 + x3 − x1. But the point x2 + x3 − y belongs to Z2 and
triangle with vertices x1, x2, x3, contradicting the simplicity of the set {x1, x2, x3}. Hence the
simplicity of the set {x1, x2, x3} implies the simplicity of the three sets {x1, x2, x3, x2 + x3 − x1},
{x1, x2, x3, x1 + x3 − x2}, and {x1, x2, x3, x1 + x2 − x3}.
1 This work was supported by the Russian Foundation for Basic Research, project no. 0001-00599.
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Every simple set consisting of three points on a plane can be augmented to a maximal set only
by three methods. Each of these methods yields a maximal set of four points, which are the vertices
of some parallelogram.

We now study simple sets in Z3.
Lemma 1. If four points of a simple set M lie on a plane, then the set M belongs to adjacent

planes.

Lemma 2. A tetrahedron with vertices in Z3 and not containing other points of Z3 lies between
adjacent planes.

Theorem. A polyhedron M with vertices in Z3 and not containing other points of Z3 lies between
adjacent planes.

Corollary 1. Every maximal simple set in Z3 is the union of vertices of two parallelograms lying
on adjacent planes.

APPENDIX

Proof of Lemma 1. Let the vertices of a parallelogram be x1, x2, x3, and x4. Choosing a
suitable coordinate system and changing the numeration of points, the coordinates of these point
can be made such that x1 = (0, 0, 0), x2 = (1, 0, 0), x3 = (0, 1, 0), and x4 = (1, 1, 0).

In this coordinate system, the third component of all other points of M is±1. Indeed, assume the
contrary, i.e., x5 = (a, b, c), |c| > 1. Let (d) be the fractional part of d and let {d} = (1− (d)). Take
α = min({a/|c|}, {b/|c|}), where β = {a/|c|}−α, γ = {b/|c|}−α, and δ = 1−α−β−γ−1/|c|. Here
α, β, γ, and δ are nonnegative numbers and their sum is 1. The point δx1+βx2+γx3+αx4+1/|c|x5

belongs to Z3 and to the polyhedron with vertices in M , contradicting the simplicity of M .
If all points of M lie on one side of the plane x3 = 0, then all points of M lie on two planes,

either on x3 = 0 and x3 = 1, or on x3 = 0 and x3 = −1.
In M , let there exist points lying on different sides of the plane x3 = 0. Two cases are possible.

In case I, one point lies on one side of the plane x3 = 0 and all other points (not lying on this
plane) lie on the other side. In case II, every side of the plane contains two points each.

Let us examine case I in detail. The third base vector can be chosen such that x5 = (0, 0, 1)
and all other points lie on the other side. Let us join x5 with the points of M lying on the other
side of the plane. The midpoints of the intervals thus constructed belong to the plane x3 = 0 and
can lie only on the lines x3 = 0, x1 = 1/2, and x3 = 0, x2 = 1/2. Indeed, the midpoints cannot
belong to the set K = {(x, y)||x| ≥ 1/2, |y| ≥ 1/2}, because the point xi is not a vertex of M in
the contrary case. On the other hand, the midpoints of intervals joining the points in Z3 belong
to (1/2)Z3. But the points of (1/2)Z3 not belonging to K lie on the lines x3 = 0, x1 = 1/2 and
x3 = 0, x2 = 1/2.

Let us assume that all midpoints of intervals lie on the line x3 = 0, x1 = 1/2. Then all points of
M lies on two planes x1 = 1 and x1 = 0. Similarly, if the midpoints lie on the line x3 = 0, x2 = 1/2,
then the points of M lie on the planes x2 = 1 and x3 = 0.

Now let us consider the case in which the midpoints of intervals lie on two lines. Without loss
of generality, we can assume that the midpoints of intervals [x5, x6] and [x5, x7] lie on the lines
x3 = 0, x1 = 1/2 and x3 = 0, x2 = 1/2, respectively. Then x6 = (1, a,−1) and x7 = (b, 1,−1).
The inequalities 0 ≤ a ≤ 2 and 0 ≤ b ≤ 2 must both hold (otherwise, one of the points xi, where
i = 1, 2, 3, 4, is not a vertex of M). Let, for the sake of definiteness, 0 ≤ a ≤ 2. If a = 1, then the
midpoints of intervals lie on a line. Hence a = 0 or a = 2. Without loss of generality, we can take
a = 2 (otherwise, we take a different coordinate system) and x6 = (1, 2,−1). The points x1, . . . , x7

lie on the planes x2 + x3 = 0 and x2 + x3 = 1.
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Let the point x8 lie in the set M . The midpoint of the interval [x5, x8] lies either on the
line x3 = 0, x2 = 1/2, or is (1/2, 0, 0). In the first case, M lies on two planes x2 + x3 = 0 and
x2 + x3 = 1, whereas he second case is not possible, because the interval [(1, 0,−1), (1, 2,−1)]
contains a point with integral coordinates.

Let us consider the case in which both sides of the plane x3 = 0 contain two points each. Let
x5 and x6 lie on one side and x7 and x8 lie on the other side. Let us choose the third base vector
such that x5 = (0, 0, 1). The midpoints of intervals (x5, x7), (x5, x8), (x6, x7), and (x6, x8) lie in
the plane x3 = 0, i.e., on the lines x3 = 0, x1 = 1/2 and x3 = 0, x2 = 1/2.

Let us assume that all midpoints of these intervals lie on the line x3 = 0, x1 = 1/2. Then all
points of M lie on two planes x1 = 1 and x1 = 0. Similarly, if the midpoints lie on the line x3 = 0,
x2 = 1/2, then the points of M lie on the planes x2 = 1 and x3 = 0.

Let us consider the case in which the midpoints of intervals lie on different lines. Note that the
midpoints of three intervals cannot lie on the same line; otherwise all four points x5, x6, x7, and
x8 lie on one plane and the midpoints of all four intervals lie on the same line. Consequently, the
midpoints of two intervals lie on one line, whereas the midpoints of other two intervals lie on a
different line. Since the points of the sets Ki cannot belong to Conv(M), two midpoints are either
(1/2, 0, 0) and (1/2, 1, 0), or (0, 1/2, 0) and (1, 1/2, 0). Changing the numeration of points such that
the midpoints are (1/2, 0, 0) and (1/2, 1, 0), we find that the first of these points is the midpoint
of the interval (x5, x7). Hence x7 = (1, 0,−1). The point (1/2, 1, 0) cannot be the midpoint of the
intervals (x5, x8) (then x8 = (1, 2,−1) and (1/2)x8 + (1/2)x7 ∈ Z3) and (x6, x7) (then x6 = (0, 2, 1)
and (1/2)x5 + (1/2)x6 ∈ Z3). Consequently, this point is the midpoint of the interval (x6, x8).
Let the midpoint of the interval (x5, x8) be (a/2, 1/2, 0), where a ∈ Z. Then x8 = (a, 1,−1) and
x6 = (1− a, 1, 1). All points lie on two planes x2 = 0 and x2 = 1.

Proof of Lemma 2. We prove this lemma by reductio ad absurdum. Let T be the tetrahedron
of least volume satisfying the conditions of the lemma for which the assertion of the lemma does
not hold. Let the vertices of the tetrahedron T be x1, x2, x3, and x4. Without loss of generality,
we can take x4 = 0. Let A = (x1, x2, x3) and ∆ = |det A|. If ∆ = 1, then the assertion of the
lemma is obviously satisfied. Let ∆ ≥ 2. Let S denote the set of all nonzero solutions of the system
of equations yA = 0(∆), whose components are nonnegative numbers, strictly less than ∆.

If S contains a y for which y1 + y2 + y3 ≤ ∆, then the point (y1/∆)x1 + (y2/∆)x2 + (y3/∆)x3 +
(1 − (y1 + y2 + y3)/∆)x4 belongs to T ∩ Z3. By the conditions of the lemma, the tetrahedron T
does not contain any point of Z3. Hence the inequality y1 + y2 + y3 > ∆ holds for any y ∈ S.

If S contains a y for which y1 + y2 + y3 ≥ 2∆, then S also contains a z = −y(∆) for which
z1 +z2 +z3 ≤ ∆, which is impossible. Hence the inequality y1 +y2 +y3 < 2∆ holds for every y ∈ S.

If S contains a y and a z such that y1 +y2 +y3 = z1 +z2 +z3, then S also contains a v = y−z(∆)
for which v1 + v2 + v3 is either ∆ or 2∆, which is impossible by the above assumption.

The set S contains ∆− 1 elements. Hence S contains a y for which y1 + y2 + y3 = 1 + ∆.
Let us take x5 = (y1/∆)x1 + (y2/∆)x2 + (y3/∆)x3 − (1/∆)x4. The determinant of the matrix

(x1−x5, x2−x5, x3−x5) is 1 in absolute value. Introducing a coordinate system with center at the
point x5 and base x1 − x5, x2 − x5, x3 − x5, we find that x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1),
x4 = y, and x5 = 0. Let M be a polyhedron Conv(x1, . . . , x5). It can be represented by the
union of tetrahedra T and Conv(x1, x2, x3, x5). Since none of these tetrahedra contains points
of Z3, the polyhedron M also does not contain any point of Z3, except its vertices. Express the
polyhedron M as the union of tetrahedra T1 = Conv(x2, x3, x4, x5), T2 = Conv(x1, x3, x4, x5), and
T3 = Conv(x1, x2, x4, x5). None of them contains points of Z3 and each is less in volume than the
tetrahedron T . Consequently, each of these tetrahedra lies between adjacent parallel planes. For
the sake of definiteness, let y1 ≥ y2 ≥ y3.
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If y3 is either 0 or 1, then T lies between adjacent parallel planes x3 = 0 and x3 = 1. Let y3 ≥ 2.
The condition that the tetrahedron T1 lies between two adjacent parallel planes is equivalent to

the existence of a nonzero solution h ∈ Z3 for the system of inequalities 0 ≤ h2 ≤ 1, 0 ≤ h3 ≤ 1,
and 0 ≤ h1y1 + h2y2 + h3y3 ≤ 1. The solution of this system exists (since y1 ≥ y2 ≥ y3) if y1 = y2

or y1 = y2 + y3 or y1 + 1 = y2 + y3.
If y1 = y2, then the point (1/y1)x4 + (1− y3/y4)x3 + ((y3 − 1)/y1)x5 belongs to M ∩ Z4, which

is impossible.
If y1 = y2 + y3, then the condition that the tetrahedron T2 lies between two adjacent parallel

planes is equivalent (since y1 ≥ y2 ≥ y3) to one of the equalities y1 − 2y2 + y3 = 0 and y1 −
2y2 + y3 = 1. In the first case, y1 = 3y3 and y2 = 2y3, and the point (1/y3)x4 + (1 − 1/y3)x5

belongs to M ∩ Z3. In the second case, y1 = 3y3 − 1 and y2 = 2y3 − 1. For y3 ≥ 3, we have
(1/y3)x1 + (1/y3)x2 + (1/y3)x4 + (1− 3/y3)x5 ∈M ∩Z3, and for y3 = 2, we have x4 = (5, 3, 2) and
(1/3)x1 + (1/3)x3 + (1/3)x4 ∈M . Hence this case is impossible.

If y1 + 1 = y2 +y3, then the condition that the tetrahedron T2 lies between two adjacent parallel
planes is equivalent (since y1 ≥ y2 ≥ y3) to one of the equalities: y3 = y2 and y1 − y2 = 1. In the
first case, y1 = 2y3 − 1, y2 = y3, and (1/y3)x1 + (1/y3)x4 + (1− 2/y3)x5 ∈M ∩ Z3. In the second
case, y1 = y2 + 1, y3 = 2. Depending on the parity of y2, the midpoint of one of the intervals, i.e.,
either [x1, x4] or [x2, x4], belongs to Z3. Hence this case is also impossible.

Proof of Theorem. Let a tetrahedron T with vertices x1, x2, x3, x4 in M have the largest volume.
Let us choose a coordinate system with center at x1. By Lemma 2, this tetrahedron lies between
two adjacent parallel planes, for example, hx = 0 and hx = 1.

Let x5 be a vertex of M that is different from the vertices of the tetrahedron T . Let us express x5

in terms of vectors x2, x3, and x4 as x5 = α2x2+α3x3+α4x4. Since the volume of the tetrahedron T
is maximal, the inequalities |α2| ≤ 1, |α3| ≤ 1, |α4| ≤ 1, and |α2 + α3 + α4 − 1| ≤ 1 hold.

If three vertices of the tetrahedron T lie on the plane hx = 0 or the plane hx = 1, then, without
loss of generality, we can assume that the points x1, x2, and x3 lie on the plane hx = 0. In
this case, all other vertices of M can lie only on the planes hx = 0,±1. Choosing the coordinate
system (x2, x3, x4), we find that x1 = (0, 0, 0), x2 = (1, 0, 0), x3 = (0, 1, 0), x4 = (0, 0, 1), and
h = (0, 0, 1). For other vertices of M , we have (−1, 0, 1), (−1, 1, 0), (−1, 1, 1), (0,−1, 1), (0, 1,−1),
(0, 1, 1), (1,−1, 0), (1,−1, 1), (1, 0,−1), (1, 0, 1), (1, 1,−1), and (1, 1, 0). If at least one of the points
(−1, 1, 0), (1,−1, 0), and (1, 1, 0) belongs to M , then the assertion of the theorem follows from
Lemma 1. If M does not contain the points (0, 1, 1) and (1, 0, 1), then the adjacent parallel planes
on which M lies can be taken to be the planes x1 + x2 + x3 = 0 and x1 + x2 + x3 = 1.

If (0, 1, 1) ∈ M , then only the points (−1, 0, 1), (−1, 1, 1), (1, 0,−1), and (1, 0, 1) among the
above points can be in M ; otherwise, T will not be the maximal tetrahedron. Then the adjacent
parallel planes on which M lies can be taken to be the planes x2 = 0 and x2 = 1.

If (1, 0, 1) ∈M , then M may contain only the points (0,−1, 1), (0, 1,−1), (0, 1, 1), and (1,−1, 1).
The planes x1 = 0 and x1 = 1 can be taken to be the planes between which M lies.

Let us assume that no three vertices of the tetrahedron T lie on the plane hx = 0 or the plane
hx = 1. Let us also assume, for the sake of definiteness, that the vertices x1 and x2 lie on the
plane hx = 0 and vertices x3 and x4 lie on the plane hx = 1. Note that hx5 = α3 + α4 ∈ Z.
If hx5 is equal to 0 or 1 for all vertices of M , then the assertion of the theorem holds. The case
α3 + α4 = −2 is impossible, because the inequalities |α2| ≤ 1 and |α2 − 3| ≤ 1 are incompatible.
If α3 + α4 = −1, then the inequalities |α2| ≤ 1 and |α2 − 2| ≤ 1 have a unique solution α2 = 1,
and −α3x3 − α4x4 = x2 − x− 5 ∈ Z3 ∩M . Therefore either α3 = 0 and α4 = −1, or α3 = −1 and
α4 = 0. In the first case, the points x5, x1, x2, and x4 lie on one plane, whereas the points x5, x1,
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x2, and x3 lie on one plane in the second case. In either case, the assertion of the theorem follows
from Lemma 1.

Finally, let us consider the case in which α3+α4 = 2. In this case, α3 = α4 = 1 and −1 ≤ α2 ≤ 0.
Since −α2x2 = (1 +α2)x1−α2x2 = x5−x3− x4 ∈M ∩Z3, we find that either α2 = 0 or α2 = −1.
In the first case, the points x1, x3, x4, and x5 lie on one plane, whereas in the second case, the
points x2, x3, x4, and x5 lie on one plane. In either case, the assertion of the theorem follows from
Lemma 1.
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