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Введение 
 
Целым называется полиэдр, у которого все 

вершины имеют целые координаты. Множество 
вершин полиэдра P  обозначаем через )(PV . 
Рассматриваются целые полиэдры  convPI  

)( dZP  заданные неявно, т.е. известны мат-
рица A  и вектор b  такие, что P  

}  :{ bAxx  , но неизвестна система линейных 
ограничений  для  полиэдра IP .   Число вершин в 

IP  может быть как угодно большим даже в слу-
чае, когда P  – треугольник. В [1] приведена 
геометрическая интерпретация подходящих 
дробей к числу  251 , из которой следует, 
что выпуклая оболочка целых решений системы 
неравенств 02)51( 21  xx , 121  sfx , 

02 x , имеет 2s  вершины )0,1(0 p , 
),(),( 21212221 kkkkkk ffffpp   ),1( sk   

)0,( 121   ss fp . Числа kf  являются элементами 
последовательности Фибоначчи: 11 f , 

00 f , 21   kkk fff  )1( k . В [2] этот 
пример немного изменен:  полиэдр  12  :{ xfx s  

Iss xxfxf }0  ,0  ,1 21
2

12212    имеет вер-
шины ),1,0( 120  sfp    ),( 22121 kkkk ffpp  

),( 12122   ksk fff  11  sk , )0,0(2 sp .   
Обозначим Id bAxxbAP }  :{),(  , где 

,ddZA  ., dZbdrank A     В [3] (см. также 
[4]) изучался вопрос о числе вершин в ),(2 bAP .  

Найдены последовательности   
11  , 22  , 212   kkk   3k , 01  , 
12  , 212 2   kkkk   3k , 01  , 

12  , 212 2   kkkk  )3( k  такие, 
что каждый из полиэдров   211:{ xxx kk  

Ik x }0  , 2   и Ikkk xxxx }0  ,:{ 2211    
имеет k  вершин. Доказано, что если  

kA  det , то число вершин в полиэдре 
),(2 bAP  меньше k .   

В следующем разделе излагается способ на-
хождения коллекции полиэдров ),(2 bAP  с за-
данным  числом вершин.  Он основан на сооб-
ражениях первого алгоритма нахождения   
двумерного полиэдра IP , опубликованного  
в [5] (см. также [4]). Идею алгоритма  поясним 
на примере полиэдра Ixxx }0   ,{ 221   
с положительными целыми , . Назовем  
весом произвольного вектора ),( 21 uuu   вели-
чину 21   )( uuuw  . Направляющие векто-
ры ребер принадлежат последовательности 

)0 ,1(1 h , )1 ,0( 2 h , 







 

 k
k

k
k h

hw
hwh

)(
)( 1

1  

),...,2(  1 nkhk   , заканчивающейся вектором 
с нулевым весом. Вершины вычисляются в по-
рядке обхода полиэдра по часовой стрелке, на-
чиная с   )0 , (1 T .  Похожие  алгоритмы 
получены в работах [6, 7]. Верхняя оценка вре-
менной сложности всех алгоритмов равна 

), log( amO  где m  – число неравенств в систе-
ме, задающей P , a  – наибольший по модулю 
коэффициент. 

Точка с целыми координатами, принадле-
жащая полиэдру, называется неприводимой, 
если она не представима полусуммой двух дру-
гих целых точек этого полиэдра. Всякая верши-
на целого полиэдра неприводима, но не всякая 
неприводимая точка – вершина. Например, не-
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приводимая точка )0,1(  не является вершиной  
в полиэдре ))1,3(),1,0(),0,0(( conv . Известные 
верхние оценки числа вершин в целых полиэд-
рах получены в результате оценки числа имен-
но неприводимых точек.   В работе [8] вве- 
дено следующее понятие: dZM   обла- 
дает свойством разделенности, если из  
условий yxMyx  2 ,,   следует, что yx  .  
Число точек разделенного множества, удов- 
летворяющих неравенствам   iii x  

)11(  di , не превышает  



i

d

i
(log1 2

1

1
 

+ )1/()2 i .  Этот факт применялся  для оцен-
ки числа вершин  различных целых  полиэдров 
[10, 13]. Впоследствии этот же подход получил 
развитие в [14, 15].  В разделах 3–5 мы приво-
дим обзор  результатов о вершинах.  
 В разделе 6 приведено описание семейства 
полиэдров  P  из работы  [14],  заданных систе-
мами с иррациональными коэффициентами,  с 
известной нижней оценкой  для |)(| IPV .  При 

2d  пока неизвестны последовательности по-
лиэдров ),( bAPd , для которых нижняя оценка 
числа вершин совпадала бы по порядку с верх-
ней.  
 Некоторые результаты, не упомянутые в 
этой статье, можно найти в [21]. 

2. Построение  полиэдров ),(2 bAP    
с заданным числом вершин 

 
Цепочку векторов  ,...,hh n }  ,{1  назовем 

правильной, если первые 1k  векторов явля-
ются последовательными ребрами полиэдра 

Ixxxx }0  ,:{ 221   с целыми положи-
тельными . ,   

Очевидны следующие свойства правиль-
ной цепочки. 

1. Любая часть правильной цепочки являет-
ся правильной.  

2. Для всякого 3k  найдутся такие  
0 ,0 k k ,  что 2k1    kkkk hhh .  

3. Для всякого 3k  справедливо неравен-
ство  

 ..... 11  hhh kk   (1)                        

Цепочку векторов  ,...,hh n1 назовем 
регулярной, если ,0  , 21   kkkkk hhh  

)3(  kZk , и примитивной, если 
1),det( 21 hh . 

Нетрудно показать, что регулярная прими-
тивная цепочка, удовлетворяющая неравенству 
(1), является правильной. 

Для построения полиэдра с k  вершинами 
надо сначала выбрать векторы 21, hh  с неотри-
цательными целыми координатами такие, что 

21 hh    и 1),det( 21 hh . Предположим, что 
уже найдены )(1 ks,...,hh s  .  Выберем целое 

1s  такое, что  hhhh ssss   ...111  и по-
ложим 111   ssss hhh . Пусть найден вектор 

),( 2,1, kkk hhh  . Тогда точки ,...,  ),0 ,0( 1121 hTTT    
),( 2111 tthTT kkk    являются вершинами 

полиэдра ,:{ 21,12,21,12, ththxhxhx kkkk   

Ix }02  . 
Сформулируем несколько предложений о 

свойствах коэффициентов  в правильных це-
почках.   

 
Предложение 1. Для всякого k  выполняется 

неравенство 2k .  
 
Предложение 2. Если  ,...,hh n1 – правильная 

примитивная цепочка и 11   nnn hhh , то 
 h,...,hh nn 11 ,   будет правильной цепочкой при 

3 . 
Доказательство.   nnnn 11 3  

1111 ...)...(2   nnn . 
Если выбрать )2,1(  ),1,0(  21  hh , то ре-

гулярная цепочка с коэффициентами 3i  
)3( si   образует последовательность ребер 

многоугольника Клейна (см. пример выше).   
 
Предложение 3. Пусть 2 sm . Тогда 

найдется l  такое, что slm   и 4l . 
Доказательство. Из соотношений s   

= 212   ss , 11 ...  ss следует, что 

121 ...2   ss , поэтому 31  s . Если 
41  s , то предложение доказано. Если 
31  s , то 1132 ...23   sss , 

132 ...2   ss . Таким образом, тройке 
должен предшествовать коэффициент не мень-
ший 3, а поскольку 2m , то между m  и s  
должна встретиться  4. 
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Следующее предложение означает, что пра-
вильная нерегулярная цепочка с рациональны-
ми коэффициентами может быть вложена в ре-
гулярную цепочку. 

 
Предложение 4. Если целые векторы u , v  и 

w  связаны равенством  wvdu  , где   ,  
– несократимые целые числа, то существуют 
целое число d  и регулярная цепочка, начи-
нающаяся в w  и заканчивающаяся в du . 

Доказательство. Применим к числам   и   
процедуру подобную алгоритму Евклида. 

  ,0  , 111  rrd  

  ,0  , 12212 rrrrd   

  . . . . . . 

  .1  , 2212   sssss rrrdr  
Искомую цепочку образуют векторы w , 

wvdp  11 , vpdp  122 , 1233 ppdp  , ..., 

ssss ppdp   122 , 121   sss pprdu . 
 
Предложение 5. Если в регулярной цепочке 

 ,...,hh n1 для некоторых s  и m  выполняются ра-
венства 2...1   mss , то  1)2( si hsih  

.)(  )1( 2 mishsi s    

3. Оценка числа вершин  
в задаче групповой минимизации 

 
Пусть ddZA   – невырожденная матрица.  

Полиэдр  IAxbttT  :0  называется 
полиэдром задачи групповой минимизации. 
Формула Axbt   устанавливает взаимноод-
нозначное соответствие как между вершинами  

),( bAPd  и T , так и между их неприводимыми 
точками. В [8]  показано, что число неприводи-
мых точек в T  не превышает 1

2 )1 (log  d , 
где . det A  

В [12] оценивается снизу среднее число не-
приводимых точек и вершин в целых полиэдров 
из класса aG , образованного полиэдрами 

 ,....:{ 112211 baxxaxaxaxP ddd    

Idi )}1,...,1( 0x i  , где ab 0 ,  aai 0 , 
при }1,...,1{  di . Средним числом вершин в 

aG  называется величина    .1 



aGPa

k PV
G

a   

Аналогично определяется среднее число )(an  

неприводимых точек в aG . Справедливы нера-

венства    111 )4(ln!14)(  dd
n dada   и 

     111
)4(ln!14 

 ddd
k dadda . Таким об-

разом, при фиксированной размерности d  
нельзя понизить степени полиномов в правых 
частях неравенств (10) и (11) в [12]. 

4. Число вершин в целочисленной задаче 
о рюкзаке 

 
В работе [8] показано, что  число неприво-

димых точек в полиэдре задачи о рюкзаке 
 IxaxxP 0,:  ,   где    dZa , 0a , не 

превышает     



d

i
ia

1
2 1log1 .       

Этот результат получен также в [13]: поли-
эдр покрывается ящиками, т.е. множествами 
вида    uxuxuI 2:  , где компоненты 
вектора u  выбираются из множества 
  ,2,,4,2,1,0 s . Поскольку каждый ящик 
содержит не более одной вершины, то справед-
ливо неравенство     dPV  4log2 , где 

 ii
a max . 

В [14] сделана попытка усилить эту оценку и 
опубликовано неравенство 

        1
22 4log2log  dddPV .    (2) 

Однако, доказательство этого неравенства не-
верно, поскольку автор предполагал, что вер-
шины P  содержатся лишь в ящиках, пересе-
кающих гиперплоскость, проходящую через 
вершины, расположенные на координатных 
осях. Контрпримером является полиэдр 

IyxyxyxP }0,0,3074:),{(  . Ящик 
)2,4(I  содержит вершину (4,2)  и не пересека-

ет прямую, проходящую через точки 
)4,0(  ),0,7( . 

Приведем строгое доказательство неравен-
ства (2). Рассмотрим множество P  
  Iddd xxxxaxx 0,0,:, 111  


 . Не-

трудно видеть, что )()( PVPV  . Рассмотрим 

также множества  daxPVxT jjj ][:)(   

 dj ,1 . Так как множество )(PV   обладает 

свойством разделенности, то    dT j 2log2  
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  )4(loglog)]][2([log1 1
22,1 2  

 dd
jii i da . 

Если для точки Pp  справедливы неравенст-

ва dap ii ][ при ],1[ di , то она принадле-
жит симплексу, образованному началом коор-
динат и вершинами полиэдра P  на координат-

ных осях. Следовательно, для всякого  PVp  

найдется j  такое, что dap jj ][ . Отсюда 

вытекает, что      d
j jTPV 1  

     1
22 4log2log  ddd .  

В [12] получены нижние оценки среднего 
числа неприводимых и крайних точек в одном 
классе полиэдров.  Пусть aK  – класс полиэдров 
вида Iddd baxxaxaxP }.... :0{ 1111   , 

где baadiaai  )1( ),11( , . Через 
)(AKa  обозначим подкласс, образованный по-

лиэдрами, у которых Ab  . Средним числом 
вершин в )(AKa  назовем величину 

   



)()(

1,
AKPa

k
a

PV
AK

Aa , средним чис-

лом вершин в  aK  – величину   ak  
),(lim AakA




. Пусть  ... :{' 11xaxP  

Iiaddd dixbresaxxa })1,...,1( 0 ),(11   . 
Известно (см. например, [11]), что 

|)(|  |)'(| PVPV  . Следовательно,   

   





aGPa
k PV

a
aaA

AK
Aa

'
')1(

)(
1, . 

Отсюда получается неравенство    ak  

  )('1
'

aPV
G k

GPa a

 


. Неравенство для 

среднего числа неприводимых точек выводится 
аналогично. 

5. Верхняя оценка для произвольного 
полиэдра 

 
Хотя доказательство верхней оценки в работе 

[14] неверно, идея этого доказательства оказа-
лась продуктивной и была развита в работе [15].  

Пусть dmZA  , dA rg , mZb , 

        m
i

d
j iji ab1 1 22 1log1log  и 

 bAxxP  : . Для описания множества 
},...,{)( 1 sI vvPV   используется измененная сис-

тема неравенств. Каждое неравенство ii bxa   

заменяется на  ,'2'
25

iii
n

i bxab i     где 
12'  ,2'  iiii bbaa  и 10  i  подбираются 

так, чтобы плоскости ;,...,1(   '2' mixab i
j

i
i   

)5,...,1 2 dj находились в «общем положе-
нии».  Полиэдр P  решений измененной систе-
мы разбивается на ячейки  mjjK ,...,1  

;,...,1( 2''2':{ 1 mibxabx i
j

iii
j

i
ii  

)}5,...,1 2 dj . Каждая ячейка содержит не 
более одной точки из )( IPV . Пусть U  – мно-
жество вершин всех ячеек, U  – множество то-
чек U , принадлежащих границе 'P . Следую-
щая процедура строит инъективное отображе-
ние F  множества  IPV  в множество U .  

1. Точки множества IPU \  нумеруются так, 
чтобы точка ju  была вершиной полиэдра 

 jI uuPconv ,,, 1  . Таким образом, для любых 

ji   справедливо соотношение ,( Ij Pconvu   

),,1 iuu  . 
2. Для всякого },...,1{ si  ячейка, содержа-

щая целую вершину iv , получает метку. Поме-
ченные ячейки не содержатся в IP  и каждая из 
них имеет непустое пересечение с IP . Каждая 
метка может принадлежать лишь одной ячейке, 
следовательно, если одна ячейка получит метку, 
то ячейка, у которой была эта метка, становится 
непомеченной. Полагаем 0j . 

3. Увеличиваем j  на единицу. Если найдет-
ся помеченная ячейка qK , что ,'( Iq PconvK   

),...,1 juu  и ),...,,'( 11  jIq uuPconvK , то про-
должаем, иначе возвращаемся к началу пунк-
та 3. Пусть pu  – вершина qK , для которой вер-

ны условия ),...,,'( 1 jIp uuPconvu   и pu  

),...,,'( 11  jI uuPconv . Тогда jpj 1 , сле-

довательно, ju  – вершина qK . Отсюда следует, 

что ячейка qK  определяется единственным об-

разом. Действительно, если KKu qj  , то 

найдется отрезок KKl q  , содержащий ju , 

следовательно, вопреки построению, ju  не бу-

дет вершиной в ),...,,'( 1 jI uuPconv . Возможны 
два случая. 

(a) Uu j  . Полагаем   jq uvF  . 
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(b) Uu j  .  Пусть K   – ячейка, в которой 

содержатся точки xu j 2 , где Kx , и x  

очень близко к ju . Поскольку все помеченные 
ячейки имеют общие точки с множеством 

),...,,'( 1 jI uuPconv , то K   не помечена. Теперь 
K   получает метку q . Повторяется пункт 3. 

Отсюда получается оценка  

   UPV I   121
1 152


 

dd
m dmС . 

6. Примеры полиэдров с известной  
нижней оценкой числа вершин 

 
В работе [14] описан класс полиэдров в 3R , 

с известной нижней оценкой числа вершин. При 
построении примеров используется поле разло-
жения  321 ,, QF  многочлена    3ttf  

122  tt . Корнями  tf  являются числа 







 


7

2cos2 k
k )321( ,,k  , рассмотренные в 

[16]  в связи с изучением  экстремальных 
свойств тернарных форм.  

 
Теорема 1.  Пусть P – множество решений 

системы 

 











,0
,0
,0

322113

312312

332211

xxx
xxx
xxx

     (3) 

удовлетворяющих неравенству  321 xxx  
L , тогда число вершин в IP  не меньше 

 L2logO . 
Доказательство основано на следующих 

предложениях. 
 
Предложение 6. Для любого IPx  выпол-

няется неравенство 
  
  .1322113

312212332211




xxx
xxxxxx

 

 
Предложение 7. Любая точка, принадлежа-

щая границе множества ,0:{  xRx d  
}11 dxx  ,  является крайней. 

 
Предложение 8. Любую единицу поля F  

можно представить в виде 21
21

ss  .  
 

Предложение 9. Решение системы  

 
















L
xxx
xxx
xxx

ssssss

ss

ss

ss

212121

21

21

21

133221

13322113

32312312

21332211

,0
,0
,0

  (4) 

является крайней точкой для IP , следовательно, 
число вершин в IP  не меньше числа неотрица-
тельных пар  21, ss , удовлетворяющих нера-

венству   Lss   212
23 , т.е. не меньше  L2logO . 

Полное описание выпуклой оболочки множе-
ства целых решений системы (3) получено в [17].  
Много интересных результатов о выпуклой обо-
лочке множества целых решений специальных 
систем неравенств с иррациональными коэффи-
циентами можно найти в работах [17–20]. 

 
Работа выполнена при поддержке Российского фонда 

фундаментальных исследований (код проекта 05-01-
00552). 
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A review is given of results of convex hull vertices of all polyhedron integral points. Most of the results are fol-

lowed by brief proofs. 
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