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Abstract. We consider classical circular Rydberg states of a hydrogenic atom/ion under collinear electric
and magnetic fields of arbitrary strengths, the entire system being immersed into a plasma with the Debye
screening. In this way we add a “new dimension” to the results of the previous paper of one of us, where
the screening was not taken into account. We show in detail how the screening decreases the value of the
critical electric field required for the ionization at different values of the magnetic field. Our results should
have a fundamental importance because hydrogenic atoms/ions under external fields remain a test-bench
for atomic physics. Also our results could motivate experiments on the magnetic control of the “continuum
lowering” in cold Rydberg plasmas, this being of practical importance.

1 Introduction

In paper [1] there was a study of a hydrogen-like system
with the stationary nucleus of charge Z at the origin sub-
jected to collinear electric (F) and magnetic (B) fields,
the z-axis being chosen along the direction of F (Fz > 0).
The Circular Rydberg States (CRS) of the electron were
considered: the orbit, whose plane is perpendicular to Oz,
has radius ρ and its center is on Oz at some point z.

In paper [1] the author derived analytical expressions for
the energy E of classical CRS of hydrogenlike systems in
collinear electric (F) and magnetic (B) fields of arbitrary
strengths. He also offered formulas for the dependence of
the classical ionization threshold Fc(B) and of the energy
at this threshold Ec(B) valid for the magnetic field B
of an arbitrary strength. In addition, for two important
particular cases – classical CRS in a magnetic field only
and classical CRS in an electric field only – some new
results were presented in paper [1] as well1.

a e-mail: goks@physics.auburn.edu
1 There have been lots of theoretical and experimental studies

of CRS (see, e.g., papers [2–5] and references therein) because: 1)
their properties facilitated works on inhibited spontaneous emission
and cold Rydberg gases (see, e.g., papers [6–8]; 2) classical CRS are
counterparts of quantal coherent states; 3) in the quantal method
using the expansion in terms of the inverse value of the principal
quantum number, classical CRS are the primary term (see, e.g. paper
[8] and references therein).

In the present study, the same configuration as in paper
[1] is considered to be submerged into a plasma with the
Debye screening. We show in detail how the Debye screen-
ing decreases the critical value of the electric field required
for ionization at various values of the magnetic field. Both
the electric and magnetic fields are considered to be of
arbitrary strengths, as in paper [1].

2 Results

For a hydrogen atom or a hydrogen-like ion, the allowance
for the Debye screening is effected by replacing the
Coulomb potential with the screened Coulomb potential:

Z

r
→ Z

r
e−r/a (1)

where a is the parameter of the plasma called the screening
length (atomic units are used in this study: ~ = e=me = 1).
In the cylindrical coordinates, the classical Hamiltonian
from paper [1] can be rewritten in the form

H (ρ, z) =
L2

2ρ2
− Z√

ρ2 + z2
e−
√
ρ2+z2/a+Fz+ΩL+

Ω2ρ2

2
(2)

where Ω = B/(2c). Here L= const, it is the z-component
of the angular momentum, and Ω is the Larmor frequency.
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With the scaled quantities

v =
Z

L2
ρ, w =

Z

L2
z, f =

L4

Z3
F, ω =

L3

Z2
Ω, h =

L2

Z2
H,

ε =
L2

Z2
E, λ =

L2

Za
(3)

the expression for the Hamiltonian takes the following
form:

h =
1

2v2
− 1√

w2 + v2
e−λ
√
w2+v2 + fw + ω +

ω2v2

2
· (4)

The conditions for the dynamic equilibrium are

∂h

∂w
= 0,

∂h

∂v
= 0. (5)

From the first equation in (5) we obtain

f = −
w
(
1 + λ

√
w2 + v2

)
e−λ
√
w2+v2

(w2 + v2)3/2
(6)

from where we see that for f > 0, w < 0. From the second
equation in (5) we obtain(

1 + λ
√
w2 + v2

)
e−λ
√
w2+v2

(w2 + v2)3/2
+ ω2 =

1
v4
· (7)

From (6) and (7) a more simple relation can be derived:

ω2 − f

w
=

1
v4

(8)

which is independent of λ. From here we obtain the value
w(v, f , ω) corresponding to the equilibrium:

w (v, f, ω) =
f

ω2 − 1
v4

· (9)

Then we substitute this equilibrium value of w into (6)
and obtain an implicit equation for f(v, ω), which can be
presented in the following form:

e−λk (1 + λk) = −
(
ω2 − 1

v4

)
k3 (10)

where

k =

√
v2 +

(
f

ω2 − 1
v4

)2

· (11)

We numerically solve this equation and obtain the value
f(v, ω, λ). Then we substitute this value into w in (9), get-
ting w(v, ω, λ) and then substitute the resulting values of
f and w into (4), obtaining the value of energy ε(v, ω, λ)
corresponding to the equilibrium. Thus, we obtain the para-
metric dependence ε(f) with the parameter v for the given
values of ω and λ.

Figures 1 and 2 show the dependence ε(f) at λ= 0.3 for
ω= 1 and ω= − 1.

Fig. 1. The plot of the parametric dependence ε(f) at λ= 0.3
for ω= 1 (solid curves) compared to the same plot at λ= 0
(dashed curves).

Fig. 2. The plot of the parametric dependence ε(f) at λ= 0.3
for ω= − 1 (solid curves) compared to the same plot at λ= 0
(dashed curves).

The plots obtained for λ= 0 coincide with the corre-
sponding plots in [1]. From the plots it is seen that the
screening decreases the critical value of f required for ion-
ization, because the screening lowers the continuum. To
observe this effect more clearly, we made the similar plot,
shown in Figure 3, for the case of ω= 0 to remove the
stabilization effect of the magnetic field.

We can see that the screening decreases the critical
value of the electric field by a greater value in the case
of ω= 0.

Physically, the presence of two branches in each of the
plots (solid or dashed) within Figures 1–3 has the follow-
ing explanation. For each value of f < fc, where fc is the
critical value beyond which there are no allowed values
of the scaled energy ε, there are two values of the scaled
equilibrium radius v of the orbit of the bound electron –
as explained in paper [1] (see, especially Fig. 3 from paper
[1]). One of the values corresponds to the lower energy
branch, another – to the upper energy branch. Accord-
ing to paper [1], the lower energy branch corresponds to
the stable motion of the bound electron, while the upper
energy branch corresponds to the unstable motion of the

https://www.epjd.epj.org
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Fig. 3. The plot of the parametric dependence ε(f) at λ= 0.3
for ω= 0 (solid curves) compared to the same plot at λ= 0
(dashed curves).

bound electron. This means that the critical scaled field
fc, where the two energy terms cross, is the classical ion-
ization threshold: at f = fc, the system can switch from
the stable motion to the unstable motion and to “slide”
along the upper energy branch, so that the bound electron
would end up in the continuum.

Next, we follow the procedure given in [1] to find the
dependence of the critical value of f , fc, on the scaled mag-
netic field ω. We can use either ∂ε/∂v= 0 or ∂f/∂v= 0 to
find the scaled radius of the orbit corresponding to fc; we
use the first equation here, which yields

4
v5

(
k2 − v2

)
=
(
ω2 − 1

v4

)(
v − kdk

dv
|c
)

(12)

where k is the solution of (10), and (dk/dv)|c can be found
by differentiating (10) with respect to v:

dk

dv
|c = − 4k3

v5
(
λe−λk − λk (1 + λk) + 3k2

(
ω2 − 1

v4

)) ·
(13)

Substituting (13) into (12) with k being the numerical
solution of (10), we solve the resulting equation numer-
ically for v to obtain the value vc(ω, λ) corresponding
to the ionization threshold. Substituting it further into
the expression for the electric field f(v, ω, λ), we obtain
the dependence fc(ω, λ) of the critical electric field on
the scaled magnetic field ω for a given value of the screen-
ing parameter λ.

Figure 4 shows the dependence of the critical electric
field fc on the scaled magnetic field ω for the values of
λ= 0, 0.4 and 0.6. It is seen that the screening decreases
the value of the critical electric field.

We also made the plot of |ω|(fc), shown below.
The plot in Figure 4, as well as our corresponding calcu-

lations, can be used for finding the critical electric field for
the ionization at different values of the magnetic field and
of the screening parameter. The plot in Figure 5, as well
as our corresponding calculations, can be used for finding
the magnetic field at different values of the critical electric
field for the ionization and of the screening parameter.

Fig. 4. The plot of the dependence fc(ω) at λ= 0 (blue, thin
top curve), λ= 0.4 (green, thicker middle curve) and λ= 0.6
(red, thick bottom curve).

Fig. 5. The plot of the dependence |ω|(fc) at λ= 0 (blue,
thin bottom curve), λ= 0.4 (green, thicker middle curve) and
λ= 0.6 (red, thick top curve).

For example, let us consider laser-produced plasmas
emitting hydrogenic spectral lines that exhibit Langmuir-
wave-caused dips (L-dips) in the profiles – such as, e.g., in
experiments [10,11]. The L-dips arise from the resonance
coupling of the Langmuir waves with a quasistatic electric
field in plasmas; the coupling is facilitated by the radiation
hydrogenic atom or ion – see, e.g., papers [2,13,14]. The
L-dip phenomenon allows, in particular, to accurately
measure both the electron density Ne and the quasistatic
electric field F involved in the resonance. There were
dozens and dozens of experiments by various groups
around the world at different plasma machines, where
such measurements were performed – see, e.g., books and
reviews [15–18] and references therein.

Specifically, at laser-plasma experiments with the laser
intensity I � 1018 W/cm2 (such as, e.g., the experiments
[10,11]), GigaGauss (GG) and even multi-GG magnetic
fields are expected to be developed during relativistic
laser-plasma interactions: these fields should be localized
at the surface of the relativistic critical density – see,
e.g., review [19] and references therein. The ultra-strong
magnetic field expected to arise in such experiments (the
experiments exhibiting the L-dips) can be estimated using
the results of our paper as follows.

From the experiment one would know the nuclear charge
of the radiating ion Z and the principal quantum number
n of the last observable Ly line. From the L-dips one would
determine the electron density Ne and the characteristic
value of the quasistatic electric field F (responsible for
the L-dips). This value of F can be substituted in the

https://www.epjd.epj.org
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formulas from our paper as the critical electric field Fc.
The temperature T can be estimated from the shape of
the experimental spectral line profiles. Then one can cal-
culate the screening parameter a (the Debye radius) and
its scaled counterpart λ ∼ n2/(Za). Next, one can esti-
mate fc ∼ Fcn

4/Z3. Then from our theoretical results
for ω(fc, λ), one can estimate ω. Next, one can estimate
Ω(a.u.) ∼Z2ω(fc, λ)/n3 and Ω(s−1) = 4.13× 1016Ω(a.u.),
from where the estimate of the magnetic field can be
obtained as B= 2mecΩ(s−1)/e.

3 Conclusions

We considered classical CRS of a hydrogenic atom/ion
under collinear electric and magnetic fields of arbitrary
strengths, the entire system being immersed into a plasma
with the Debye screening. By doing so, we added a “new
dimension” to the results of paper [1], where the screen-
ing was not taken into account. We showed in detail how
the screening decreases the value of the critical electric
field required for the ionization at different values of the
magnetic field2.

Our results can be used for finding the critical electric
field for the ionization at different values of the magnetic
field and of the screening parameter. Alternatively, they
can be used for finding the magnetic field at different val-
ues of the critical electric field for the ionization and of
the screening parameter.

Our results should have a fundamental importance
because hydrogenic atoms/ions under external fields
remain a test-bench for atomic physics. As for the prac-
tical importance, it should be due to the fact that the
results could motivate experiments on the magnetic con-
trol of the “Continuum Lowering” (CL) in cold Rydberg
plasmas. The CL strongly influences radiative properties
of plasmas (see, e.g. books/reviews [23–27] and references
therein)3.
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2 A sufficiently strong magnetic field can lift energy terms into
the continuum, as noted in paper [2]. These circular Rydberg states
above the ionization threshold are classical molecular counterparts
of the quantal atomic quasi-Landau levels (or resonances) discovered
experimentally by Garton and Tomkins [21] (see, e.g., book [22] for
theoretical references on atomic quasi-Landau resonances).

3 Calculations of CL evolved from ion sphere models to dicenter
models of the plasma state [25,28–33]. One of such theories - a per-
colation theory [3,25] - calculated CL defined as an absolute value
of energy at which an electron becomes bound to a macroscopic
portion of plasma ions (a quasi-ionization). In 2001 one of us derived
analytically the value of CL in the ionization channel which was dis-
regarded in the percolation theory: a quasimolecule, consisting of
the two ion centers plus an electron, can get ionized in a true sense
of this word before the electron would be shared by more than two
ions [34].
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