
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.248.28.70

This content was downloaded on 03/06/2016 at 21:23

Please note that terms and conditions apply.

Classical description of charge exchange involving He-like or Li-like ions in Rydberg states in

plasmas

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys. B: At. Mol. Opt. Phys. 49 035002

(http://iopscience.iop.org/0953-4075/49/3/035002)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/49/3
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Classical description of charge exchange
involving He-like or Li-like ions in Rydberg
states in plasmas

N Kryukov and E Oks

Physics Department, 206 Allison Lab., Auburn, AL 36849, USA

E-mail: goks@physics.auburn.edu

Received 24 July 2015, revised 25 October 2015
Accepted for publication 18 November 2015
Published 21 January 2016

Abstract
A purely classical description of energy terms of one-electron Rydberg quasimolecules
(hereafter, RQ1) consisting of one electron and two fully stripped ions of charges Z and Z′, where
Z′≠Z, had been previously published by one of us. The analysis of the crossings of the energy
terms led to a classical description of charge exchange either between a hydrogen-like ion of the
nuclear charge Z with a fully stripped ion of the charge Z′ or between a hydrogen-like ion of the
nuclear charge Z′ with a fully stripped ion of the charge Z. Later applications included, e.g., the
influence of electric and magnetic fields, as well as of the screening by plasma electrons. In the
present paper we extend the classical description of energy terms to two-electron Rydberg
quasimolecules (RQ2), consisting of two electrons and two fully stripped ions of charges Z and
Z′, and to three-electron Rydberg quasimolecules (RQ3), consisting of three electrons and two
fully stripped ions of charges Z and Z′. We show that classical energy terms of RQ2 and RQ3
also exhibit crossings like the energy terms of RQ1. The crossing of terms of RQ2 occurs at a
larger internuclear distance compared to the crossing of the corresponding terms of RQ1, so that
the cross-section of the charge exchange for RQ2 is larger than the corresponding cross-section
for RQ1. The crossing of terms of RQ3 occurs at an even larger internuclear distance compared
to the crossing of the corresponding terms of RQ2, so that the cross-section of the charge
exchange for RQ3 is even larger than the corresponding cross-section for RQ2. Thus, the
classical roots of charge exchange are revealed not only by the example of RQ1 systems, but also
by the examples of RQ2 and RQ3 systems. Our results contribute to advance the understanding
of the quantum-classical correspondence and can be used in applications where charge exchange
plays the key role.

Keywords: charge exchange, classical description, He-like and Li-like ions, Rydberg
quasimolecules

(Some figures may appear in colour only in the online journal)

1. Introduction

Charge exchange has been studied for many decades and
continues to be studied because of its great practical
importance—see, e.g., books [1, 2]. It affects the feasi-
bility of controlled fusion in magnetic confinement plasma
devices, such as, e.g., tokamaks. It is also a controlling
factor in ion storage devices. Besides, charge exchange is
a mechanism for population inversion in the soft x-ray and

VUV lasers. It plays also an important role in
astrophysics.

One of the two mechanisms of charge exchange in
plasmas is related to crossings/anticrossings of energy terms
of a quasimolecule consisting of the two colliding atoms/
ions. A spectroscopic signature of charge exchange in the
profiles of spectral lines of multicharged ions is local
depressions of the spectral intensity (called x-dips), which
offer a method for the experimental determination of the rates
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of charge exchange between multicharged ions—see, e.g.,
review [3] and references therein.

A number of processes in microscopic systems in
external fields can be studied classically. These studies con-
tribute to advance the understanding of the quantum-classical
correspondence—see, e.g. papers [4–7].

Charge exchange also can be studied within a completely
classical description—in addition to quantal studies. In year
2000 one of us published papers [8, 9] presenting a purely
classical description of energy terms of Rydberg quasimole-
cules consisting of one electron and two fully stripped ions of
charges Z and Z′, where Z′≠Z. The analysis of the crossings
of the energy terms led to a classical description of charge
exchange either between a hydrogen-like ion of the nuclear
charge Z with a fully stripped ion of the charge Z′ or between
a hydrogen-like ion of the nuclear charge Z′ with a fully
stripped ion of the charge Z [8, 9]. This meant that papers
[8, 9] broke the paradigm, in which charge exchange was
considered an inherently quantum phenomenon.

Later applications of these results included the following
studies: the magnetic stabilization of such one-electron Ryd-
berg quasimolecules (hereafter, RQ1) [10], the electric-field-
caused enhancement of the ionization of the RQ1 and of
charge exchange [11, 12], the effect of the screening by
plasma electrons on the classical energy terms of RQ1
[13, 14], the application to the problem of continuum low-
ering in plasmas [13–15], the effect of a laser field on RQ1
[16], and the attachment of an electron to a muonic hydrogen
atom [17, 18] or to a muonic hydrogenic ion [19]. All these
studies were summarized in review [20].

In papers [8, 10–14, 17, 18] the studies were focused at
Circular Rydberg States (CRS) of the QR1 systems (the
analysis in papers [9, 16, 19] went beyond CRS). CRS of
atomic and molecular systems, with only one electron,
correspond to |m|=(n−1)?1, where n and m are the
principal and magnetic electronic quantum numbers,
respectively. They have been extensively studied [21–24]
both theoretically and experimentally for several reasons: (a)
CRS have long radiative lifetimes and highly anisotropic
collision cross sections, thereby enabling experiments on
inhibited spontaneous emission and cold Rydberg gases
[25, 26], (b) classical CRS correspond to quantal coherent
states, objects of fundamental importance, and (c) a classical
description of CRS is the primary term in the quantal method
based on the 1/n-expansion (see, e.g. [27] and references
therein).

In the present paper we extend the classical description
of energy terms to two-electron Rydberg quasimolecules
(RQ2), consisting of two electrons and two fully stripped
ions of charges Z and Z′, and to three-electron Rydberg
quasimolecules (RQ3), consisting of three electrons and two
fully stripped ions of charges Z and Z′. We show that clas-
sical energy terms of RQ2 and RQ3 also exhibit crossings
like the energy terms of RQ1. The crossing of terms of RQ2
occurs at a larger internuclear distance compared to the
crossing of the corresponding terms of RQ1, so that the
cross-section of the charge exchange for RQ2 is larger than

the corresponding cross-section for RQ1. The crossing of
terms of RQ3 occurs at an even larger internuclear distance
compared to the crossing of the corresponding terms of
RQ2, so that the cross-section of the charge exchange for
RQ3 is even larger than the corresponding cross-section
for RQ2.

2. Analytical calculations of classical energy terms

We consider the following Rydberg quasimolecule: a He-like
or Li-like ion of the nuclear charge Z, (having one or two
inner electrons in state 1s, respectively), a highly excited
electron in a circular state, and a fully stripped ion of the
nuclear charge Z′. (We use atomic units ħ=e=me=1.)
The outer electron is in the superposition of the Coulomb
potential from charge Z′ and the potential Φn of a quasinu-
cleus consisting of the nucleus Z and a spherically symmetric
charge distribution corresponding to the n inner electrons in
the 1s state (see, e.g., [28]). For the case n=1, the potential
is
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where μ=Mm/(M+m) is the reduced mass of the pair
‘nucleus Z—electron’, M is the nuclear mass, and r is the
radial coordinate. In both cases the additional term in the total
potential (compared to the Coulomb potential) corresponds to
the potential due to the spherically symmetric charge
distribution of the n inner electrons in the 1s state.

The classical Hamilton function (for brevity, Hamilto-
nian) of the highly excited electron is
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where r=(ρ2+z2)1/2 is the distance from the highly excited
electron to the nucleus Z and (ρ, j, z) are the cylindrical
coordinates such chosen that the nuclei Z and Z′ are on the z-
axis at z=0 and z=R, respectively. Since the electron is in
a circular state, then j is a cyclic coordinate and its
corresponding momentum is conserved:
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With (4) and (1) or (2) substituted into (3), we obtain
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where, for the case n=1, we get
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and for n=2 we get
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In a circular state, pz=pρ=0, and E becomes the total
energy of the electron.

Using the scaled quantities
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and combining the two cases, we obtain the scaled energy ε of
the electron for both cases n=1 and n=2:
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Note that this formula corresponds to the case of RQ1
[1, 2] when n=0. From the equilibrium on the scaled
coordinates (w, p) we require
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The first of the two derivatives in equation (10) being
equated to zero, yields the equilibrium relation between the
coordinates (w, p) for the given values of Z, b and k. The

explicit form of this relation is as follows:
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Figure 1 shows, as an example, the plot p(w) for Z=3,
b=3, k=10, for both cases n=1 and n=2.

As in the case of RQ1 [1, 2], the equilibrium range is
0<w<w1 and w3<w<1. In the present case,
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where α is the solution of the transcendental equation
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The value of w1 is typically about 0.3, Z is between 1 and
Zmax, where Zmax∼10. The value of μ is very close to 1
(details are in equation (19)), so that k=μR≈R=(L2/Z)r.
Therefore, α≈wZk≈wZ(L2/Z)r=wL2r≈(L2/3)r, which
for the excited electron and most values of the scaled

Figure 1. Equilibrium plot of the dependence of the squared scaled
radius of the orbit p on the scaled axial coordinate w for Z=3,
b=3, k=10, for n=1 (solid curves) and n=2 (dashed curves).
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internuclear distance is a number significantly greater than 1.
Thus, the term in equation (13) with the exponential function
can be neglected, and this approximation yields (using
equation (12))
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In the case of two bare nuclei (n=0), equation (14)
yields the result obtained in [1, 2]: 1/(1+b1/2).

The asymptote w=w3 is determined by
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While calculating the second out of the two derivatives in
equation (10), the last term in equation (9) survives. It con-
tains the equilibrium value of ℓ. We subtract the first deri-
vative (equation (11)) from the second one and obtain the
value of the scaled angular momentum in the circular state:
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From the scaling formulas (8) it follows that r=1/ℓ2,
that is,
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Substituting equation (16) into equation (9), we obtain
the scaled energy:
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From equation (8), k=μR, where μ is the reduced mass
of the pair nucleus—electron. In our units, the mass of the
electron is 1, so μ=M/(1+M), where M is the nuclear
mass Zmp+Nmn of the nucleus containing Z protons and
N neutrons. In atomic units, mp≈1849.3596 and

mn≈1851.9088. Since
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the lower limit of μ is realized when Z=1 and N=0 and is
approximately 0.999 46 and the upper limit is 1. Therefore,
the realistic values of μ lie in the range 0.999 46�μ<1.
The values of R for the case of a Rydberg quasimolecule are
of the order of several Bohr radii. Thus, the realistic values of
k=μR, which is physically the slightly scaled internuclear
distance, are somewhere between 1 and 10.

The last term in equation (11) containing the exponential
function is small and can be neglected, leading to the possi-
bility of an analytical solution. This equation can then
be solved for p, which can then be substituted into
equations (18) and (17), thus obtaining the equilibrium
equations for ε and r. Also, from the scaling formulas we see
that E=−(Z/L)2 ε/r, so that if we denote ε/r=ε1, then ε1
and r will have the same scaling. Thus, we obtain the para-
metric dependence ε1(r) for the given b, r, Z, L, N, n with the
parameter w taking all values in the allowed range
0<w<w1, w3<w<1 according to equations (14) and
(15). This dependence can be simplified further by introdu-
cing the parameter [13]
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The final parametric approximate analytical dependence
can be represented by the following formulas (21) and (22):
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where

c
b

n

Z
1

23( )=
-

and the parameter γ takes all values in the allowed range
0< γ<1/c1/3, c1/6<γ< +∞.

In figures 2 and 3 we present the classical energy terms
ε1(r) for the case b=3, Z=6, N=6, L=10 in the cases of
RQ2 or RQ3 in comparison with the case of RQ1 [1, 2]
shown in red, thinner curves.

We also performed an exact numerical solution to this
problem. From the scaling formula for R, k=(μL2/Z)r with
μ given by equation (19). Equation (17), after being squared,
is a fourth-degree polynomial with respect to p and has a
real positive analytical solution for p which depends on r:
p0=p(w, b, r). Substituting k and the solution for p into
equations (18) and (11), we obtain the formula for energy
ε(w, b, r, Z, L, N, n) and equation (11) bearing the same
variables. Then we solve the resulting equation (11) for w (it
may have up to 3 solutions) and substitute them into ε(w, b, r,
Z, L, N, n). Also, from the scaling formulas we see that
E=−(Z/L)2 ε/r, so if we denote ε/r=ε1, then ε1 and r will
have the same scaling. Thus, we obtain the energy ε1(b, r, Z,
L, N, n), which yields the classical energy terms ε1(r) for the
given values of b, Z, L and N, for n=1, 2.

We made the numerical plots for the cases b=3, Z=6,
N=6, L=10, n=1, 2 and compared them to the analytical
plots for the same cases. As seen from figures 4 and 5, the
exact (numerical) classical energy terms coincide with the
approximate analytical ones.

The analysis of the difference between the approximate
and exact values for p and r shows a vanishingly small
error (less than 10–10) in almost all cases considered. Also,
we measured the time it takes to build a numerical plot
and compared it to that of building an analytical plot.
The ratio of the first to the second was found to be
about 2500, which shows the efficiency of the analytical
solution.

3. Relation to charge exchange

When Zeff=Z−n and Z′ differ significantly from each other,
the V-type crossings occur between two classical energy
terms that can be asymptotically labeled as Zeff- and Z′-terms.
This situation classically depicts charge exchange, as
explained in papers [1, 2]. Indeed, say, initially at r→∞, the
electron was a part of the ion of the nuclear charge
Zmin=min(Z′, Zeff). As the charges Zeff and Z′ come rela-
tively close to each other, the two terms undergo a V-type
crossing and the electron is shared between the Zeff- and Z′-
centers. Finally, as the charges Zeff and Z′ go away from each
other, the electron ends up as a part of the ion of the nuclear
charge Zmax=max(Z′, Zeff).

For collisions with relatively low velocities, the classical
cross-section of charge exchange can be calculated using the

impact parameter method (see, e.g., book [30]). In the integral
over the impact parameters, the overwhelming contribution
comes from the vicinity of the crossing of the energy terms.
Therefore, the corresponding cross-section is proportional to
the square of the crossing distance.

From figure 2 it is seen that the V-type crossing of the
upper two terms for RQ2 occurs at a larger internuclear dis-
tance than for RQ1. Therefore the cross-section of the charge
exchange for RQ2 is larger than the corresponding cross-
section for RQ1.

From figure 3 it is seen that the V-type crossing of the
upper two terms for RQ3 occurs at an even larger internuclear
distance than for RQ2. Therefore the cross-section of the
charge exchange for RQ3 is even larger than the corresp-
onding cross-section for RQ2.

Figure 2. Classical energy terms ε1(r) for the case of RQ2 for b=3,
Z=6, N=6, L=10 (blue, thick) and the corresponding terms for
the case of RQ1 (red, thin), which are lower than their counterparts
in RQ2. RQ1 and RQ2 stand for Rydberg quasimolecules with 1 or 2
electrons, respectively.

Figure 3. Classical energy terms ε1(r) for the case of RQ3 for b=3,
Z=6, N=6, L=10 (blue, thick) and the corresponding terms for
the case of RQ1 (red, thin), which are lower than their counterparts
in RQ3. RQ1 and RQ3 stand for Rydberg quasimolecules with 1 or 3
electrons, respectively.
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4. Conclusions

We extended the classical description of energy terms from
one-electron Rydberg quasimolecules (RQ1) to two-electron
Rydberg quasimolecules (RQ2) and to three-electron Ryd-
berg quasimolecules (RQ3). We obtained the classical energy
terms of RQ2 and of RQ3, and found that they exhibit
crossings like the energy terms of RQ1.

We explained the relation between the crossings of the
classical energy terms and charge exchange. Thus, the clas-
sical roots of charge exchange have been revealed not only by
the example of RQ1 systems, as in papers [1, 2], but also by
the examples of RQ2 and RQ3 systems.

The crossing of terms of RQ2 occurs at a larger inter-
nuclear distance compared to the crossing of the corresp-
onding terms of RQ1, so that the cross-section of the charge
exchange for RQ2 is larger than the corresponding cross-
section for RQ1. The crossing of terms of RQ3 occurs at an

even larger internuclear distance compared to the crossing of
the corresponding terms of RQ2, so that the cross-section of
the charge exchange for RQ3 is even larger than the
corresponding cross-section for RQ2.

From the fundamental point of view, our results con-
tribute to advance the understanding of the quantum-classical
correspondence (for example of which we referred to papers
[4–7]). From the practical point of view, our results can be
used in applications where charge exchange plays the key
role, such as, e.g., the phenomenon of x-dips in profiles of
spectral lines from plasmas [3].
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Figure 4. Classical energy terms ε1(r) for the case of RQ2 for b=3,
Z=6, N=6, L=10 obtained from the analytical (solid, red
curves) and numerical (dotted, blue curves) solutions.

Figure 5. Classical energy terms ε1(r) for the case of RQ3 for b=3,
Z=6, N=6, L=10 obtained from the analytical (solid, red
curves) and numerical (dotted, blue curves) solutions.
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