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Muonic–electronic negative hydrogen ion: circular states
N. Kryukov and E. Oks

Abstract:We studied a system consisting of a proton, a muon, and an electron (a �pe system), the muon and the electron being
in circular states. We demonstrated that in this case, the muonic motion can represent a rapid subsystem while the electronic
motion can represent a slow subsystem – the result that might seem counterintuitive. We used a classical analytical description
to find the energy terms for the quasimolecule where themuon rotates around the axis connecting the immobile proton and the
immobile electron (i.e., dependence of the energy of the muon on the distance between the proton and electron). We found that
there is a double-degenerate energy term. We demonstrated that it corresponds to stable motion. We also conducted an
analytical relativistic treatment of the muonic motion and found that the relativistic corrections are relatively small. Then we
unfroze the slow subsystem and analysed a slow revolution of the axis connecting the proton and electron. We derived the
condition required for the validity of the separation into rapid and slow subsystems. Finally, we showed that the spectral lines,
emitted by themuon in the quasi molecule, �pe, experience a red shift compared to the corresponding spectral lines that would
have been emitted by the muon in a muonic hydrogen atom (in the �p-subsystem). The relative values of this red shift, which is
a “molecular” effect, are significantly greater than the resolution of available spectrometers and thus can be observed. Observing
this red shift should be one of the ways to detect the formation of such muonic–electronic negative hydrogen ions.

PACS No.: 36.10.Ee.

Résumé : Nous étudions un système constitué d’un proton, d’un muon et d’un électron (un système �pe), le muon et l’électron
étant dans des états circulaires. Nous montrons que dans ce cas, le muon peut présenter un sous-système rapide et l’électron un
sous-système lent — un résultat qui peut sembler contre-intuitif. Nous utilisons une description analytique classique pour
trouver les termes d’énergie du muon en rotation autour d’un axe entre un proton et un électron immobiles (i.e. la dépendance
de l’énergie du muon sur la distance entre le proton et l’électron). Nous trouvons un terme à double dégénérescence et
démontrons qu’il correspond à unmouvement stable. Nous évaluons les corrections relativistes dans le mouvement dumuon et
les trouvons petites. Nous libérons alors le sous-système lent et analysons la lente révolution de l’axe pe. Nous obtenons les
conditions de validité de la séparation du mouvement en sous-systèmes lent et rapide. Finalement, nous montrons que
les lignes spectrales émises par le muon dans la quasi-molécule �pe montrent un déplacement vers le rouge par rapport aux
lignes spectrales de l’atome �p (hydrogène muonique). Ceci est un effetmoléculaire et la valeur du déplacement est significative-
ment plus grande que la résolution des spectromètres existants et peut donc être observé. L’observation de ce déplacement vers
le rouge serait une façon de détecter la formation de tels ions hydrogène négatifs muon–électron. [Traduit par la Rédaction]

1. Introduction
Studies of muonic atoms and molecules, where one of the elec-

trons is substituted by the heavier lepton �−, have several appli-
cations. The first one is muon-catalyzed fusion (see, e.g., refs. 1–3
and references therein). When a muon replaces the electron ei-
ther in the dde-molecule (D2

�), which becomes the dd�-molecule,
or in the dte-molecule, which becomes the dt�-molecule, the equi-
librium internuclear distance becomes about 200 times smaller.
At such small internuclear distances, fusion occurs with signifi-
cant probability, which has been observed in dd� or with an even
higher rate in dt� [1–3]. The second application is laser-control of
nuclear processes. This has been discussed in the context of the
interaction ofmuonicmolecules with superintense laser fields [4].
Another application is a search for strongly interacting massive
particles (SIMPs) proposed as dark matter candidates and as can-
didates for the lightest supersymmetric particle (see, e.g., [5] and
references therein). SIMPs could bind to the nuclei of atoms, and
would manifest as anomalously heavy isotopes of known ele-
ments. By greatly increasing the nuclear mass, the presence of a
SIMP in the nucleus effectively eliminates the well-known re-
duced mass correction in a hydrogenic atom. Muonic atoms are
better candidates (than electronic atoms) for observing this effect

because the muon's much larger mass (compared to the electron)
amplifies the reduced mass correction [5]. This may be detectable
in astrophysical objects [5].

Another line of research is studies of the negative ion of hy-
drogen H− (can also be denoted an epe-system (electron–proton–
electron)), which constitute an important line of research in
atomic physics and astrophysics. The epe-system has only one
bound state — the ground state having a relatively small bound
energy of approximately 0.75 eV. This epe-system exhibits rich
physics. Correlations between the two electrons are strong al-
ready in the ground state. With long-range Coulomb interactions
between all three pairs of particles, the dynamics is particularly
subtle in a range of energies 2–3 eV on either side of the threshold
for break-up into proton + electron + electron at infinity [6]. There
are strong correlations in energy, angle, and spin degrees of free-
dom, so that perturbation theory and other similar methods fail
[6]. Experimental studies of H− provided a testing ground for the
theory of correlatedmultielectron systems. Compared to the helium
atom, the structure of H− is even more strongly influenced by inter-
electron repulsion because the nuclear attraction is smaller for this
system [7]. In addition to thepreceding fundamental importance, the
rich physics of H− is also important in studies of the ionosphere's
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D-layer of Earth’s atmosphere, the atmosphere of the Sun and other
stars, and in development of particle accelerators [6].

In the present paper we combine the above two lines of re-
search: studies of muonic atoms and molecules and studies of the
negative hydrogen ion. Namely, we consider a muonic–electronic
negative hydrogen ion (i.e., �pe-system). Specifically, we study a
possibility of circular states in such system. We show that the
muonic motion can represent a rapid subsystem, while the elec-
tronic motion can represent a slow subsystem — a result that
might seem counterintuitive.

First, we find analytically classical energy terms for the rapid
subsystem at the frozen slow subsystem (i.e., for the quasi mole-
cule where the muon rotates around the axis connecting the im-
mobile proton and the immobile electron). The meaning of
classical energy terms is explained later. We demonstrate that the
muonic motion is stable. We also conduct the analytical relativis-
tic treatment of the muonic motion.

Then we unfreeze the slow subsystem and analyse a slow revo-
lution of the axis connecting the proton and electron. We derive
the condition required for the validity of the separation into rapid
and slow subsystems.

Finally we show that the spectral lines, emitted by the muon in
the quasi molecule �pe, experience a red shift compared to the
corresponding spectral lines that would have been emitted by the
muon in a muonic hydrogen atom (in the �p-subsystem). Observ-
ing this red shift should be one of theways to detect the formation
of such muonic–electronic negative hydrogen ions.

As for physical processes leading to the formation of muonic–
electronic negative hydrogen ions, one of the processes could be
the following:

e � �p ¡ �pe

(which sometimes might be followed by the decay �pe ¡ � + pe).
Such formation of the �pe-systems was discussed [8], wherein
these systems were called resonances. The theoretical approach
based on the separation of rapid and slow subsystems requires in
this case the muon to be in a state of high angular momentum.
Luckily, the experimental methods to create muonic hydrogen
atoms �p (necessary for the preceding reaction) lead to the muon
being in a highly-excited state [9, 10]. It has been shown, in partic-
ular, that the distribution of the muon principal quantum num-
ber in muonic hydrogen atoms peaks at larger and larger values
with the increase of the energy of themuon incident on electronic
hydrogen atoms [11].

2. Analytical solution for classical energy terms of
the rapid subsystem

We consider a quasi molecule where a muon rotates in a
circle perpendicular to and centered at the axis connecting a
proton and an electron — see Fig. 1. As we show later, in this
configuration the muon may be considered the rapid subsys-
tem while the proton and electron will be the slow subsystem,

which essentially reduces the problem to the two stationary
Coulomb center problem, where the effective stationary “nu-
clei” will be the proton and electron. The straight line connect-
ing the proton and electron will be called the “internuclear”
axis hereinafter. We use atomic units in this study.

Because of the difference of muon and electron masses, the
muon–proton separation is much smaller than the electron–
proton separation. Therefore, it should be expected that the spec-
tral lines, emitted by this system, would be relatively close to the
spectral lines emitted bymuonic hydrogen atoms. In other words,
the presence of the electron should result in a relatively small
shift of the spectral lines (compared to muonic hydrogen atoms);
however, this shift would be an important manifestation of the
formation of the quasi molecule �pe.

A detailed classical analytical solution of the two stationary
Coulomb center problem, where an electron revolves around nu-
clei of charges Z and Z=, has been presented in refs. 12 and 13. We
base our results in part on the results obtained therein.

The Hamiltonian of the rotating muon is

H �
p�
2 � p�

2 � (p�
2 /�2)

2m
� Z(z2 � �2)�1/2 � Z ′[(R � z)2 � �2]�1/2 (1)

where m is the mass of the muon (in atomic units m =
206.768 274 6); Z and Z= are the charges of the effective nuclei (in
our case, Z = 1 and Z= = −1); R is the distance between the effective
nuclei, (�, �, z) are the cylindrical coordinates, in which Z is at the
origin and Z= is at z = R; and (p�, p�, pz) are the corresponding
momenta of the muon.

Because � is a cyclic coordinate, the corresponding momentum
is conserved

|p�| � const. � L (2)

With this substituted into (1), we obtain the Hamiltonian for the
z- and �-motions

Hz� �
pz
2 � p�

2

2
� Ueff (z, �) (3)

where an effective potential energy is

Ueff (z, �) �
L2

2m�2
�

Z

(z2 � �2)1/2
� Z ′[(R � z)2 � �2]�1/2 (4)

Because in a circular state pz = p� = 0, the total energy E(z, �) =Ueff(z, �).
With Z = 1, Z= = −1, and the scaled quantities

w �
z

R
v �

�

R
� � �ER ℓ �

L
(mR)1/2

r �
mR

L2
(5)

we obtain the scaled energy, �, of the muon

� � (w2 � v2)�1/2 � [(1 � w)2 � v2]�1/2 �
ℓ2

2v2
(6)

The equilibrium condition with respect to the scaled coordinate
w is ∂�/∂w = 0; the result can be brought to the form

[(1 � w)2 � v2]3/2(w2 � v2)�3/2 �
w � 1

w
(7)

Fig. 1. A muon rotating in a circle perpendicular to and centered at
the axis connecting the proton and the electron. The figure is not to
scale; the actual muon–proton separation is much smaller than the
electron–proton separation.
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Because the left-hand side of (7) is positive, the right-hand side
must also be positive: (w − 1)/w > 0. Consequently, the allowed
ranges of w here are −∞ < w < 0 and 1 < w < + ∞. This means that
equilibrium positions of the center of the muon orbit could exist
(judging only by the equilibrium with respect to w) either beyond
the proton or beyond the electron, but there are no equilibrium
positions between the proton and electron.

Solving (7) for v2 and denoting v2 = p, we obtain

p(w) � w2/3(w � 1)2/3[w2/3 � (w � 1)2/3] (8)

The equilibrium condition with respect to the scaled coordinate v
is ∂�/∂v = 0, which yields

ℓ2 � p2�(w2 � p)�3/2 � [(1 � w)2 � p]�3/2� (9)

Because the left-hand side of (9) is positive, the right-hand side
must be also positive. This entails the relation w2 + p < (1 − w)2 + p,
which simplifies to 2w − 1 < 0, which requires w < 1/2.

Thus, the equilibrium with respect to both w and v is possible
only in the range −∞ < w < 0, while in the second range, 1 < w < + ∞
(derived from the equilibrium with respect to w only), there is no
equilibrium with respect to v.

From the last two relations in (5), we find r = 1/ℓ2; thus

r � p�2�(w2 � p)�3/2 � [(1 � w)2 � p]�3/2��1 (10)

where p is given by (8). Therefore, the quantity r in (10) is the scaled
“internuclear” distance dependent on the scaled internuclear co-
ordinate w.

Nowwe substitute the value of ℓ from (9), as well as the value of
p from (8) into (6), obtaining �(w) — the scaled energy of themuon
dependent on the scaled internuclear coordinate, w. Because
E = −�/R andR = rL2/m, then E = −(m/L2)�1 where �1 = �/r. Theparametric
dependence �1(r) will yield the energy terms.

The form of the parametric dependence, �1(r), can be signifi-
cantly simplified by introducing a new parameter 	 = (1 − 1/w)1/3.
The region −∞ < w < 0 corresponds to 1 < 	 < ∞. The parametric
dependence will then have the following form:

�1(	) � (1 � 	)4(1 � 	2)2[2(1 � 	 � 	2)2(1 � 	2 � 	4)]�1 (11)

r(	) � (1 � 	2 � 	4)3/2[	(1 � 	2)2]�1 (12)

Classical energy terms given by the parametric dependence of the
scaled energy −�1 = (L2/m)E on the scaled internuclear distance r =
(m/L2)R are presented in Fig. 2.

Figure 2 actually contains two coinciding energy terms: there is
a double degeneracy with respect to the sign of the projection of
the muon angular momentum on the internuclear axis. We re-
mind the readers that L is the absolute value of this projection —
in accordance with its definition in (2).

The minimum value of R, corresponding to the point where the
term starts, can be found from (12). The term starts at w = − ∞,
which corresponds to 	 = 1; taking the value of (12) at this point, we
find

Rmin �
33/2

4

L2

m
(13)

With the value of m = 206.768 274 6, (13) yields R = 0.006 282 58L2.

The following notemight be useful. The plot in Fig. 2 represents
two degenerate classical energy terms of “the same symmetry”.
(In physics of diatomic molecules, the terminology “energy terms
of the same symmetry” means the energy terms of the same pro-
jection of the angular momentum on the internuclear axis.) For a
given R and L, the classical energy, E, takes only one discrete value.
However, as L varies over a continuous set of values, so does the
classical energy E (as it should be in classical physics).

The revolution frequency of the muon, 
, is


 �
L

m�2
�

L

mR2v2
�

L

mR2p
(14)

in accordance with the previously introduced notation p = v2 =
(�/R)2. Because R = L2r/m (see (5)), then (14) becomes 
 = (m/L3)f,
where f = 1/(pr2). Using (12) for r(	) and (8) for p(w) with the substi-
tution w = 1/(1 − 	3), where 	 > 1, we finally obtain


 �
m

L3
f(	) f(	) � (1 � 	2)3(1 � 	3)2(1 � 	2 � 	4)�3 (15)

where f(	) is the scaled muon revolution frequency. Figure 3
shows the scaledmuon revolution frequency f = (L3/m)
 versus the
scaled internuclear distance r = (m/L2)R.

It is seen that for almost all values of the scaled internuclear
distance r = (m/L2)R, the scaled muon revolution frequency f =
(L3/m)
 is very close to its maximum value, fmax = 1, corresponding
to large values of R. (The quantity fmax can be easily found from (15)
given that large values of R correspond to 	 �� 1 and that this limit
yields fmax = 1.) In other words, for almost all values of R, themuon
revolution frequency 
 is very close to its maximum value


max �
m

L3
(16)

In Sect. 3, we will compare themuon revolution frequency with
the corresponding frequency of the electronic motion and derive
the condition of validity of the separation into rapid and slow
subsystems.

To analyse the stability of the muon motion, corresponding to
the degenerate classical energy terms, while considering a classi-
cal circular motion of a charged particle (which was the electron
in ref. 13) in the field of two stationary Coulomb centers, using the
same notation as in the present paper, it was shown [13] that the
frequencies of small oscillations of the scaled coordinates w and v
of the circular orbit around its equilibrium position are given by

Fig. 2. Classical energy terms: the scaled energy, −�1 = (L2/m)E,
versus the scaled internuclear distance, r = (m/L2)R.
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�± � � 1

1 � w
±
3w

Q �1/2(w2 � p)�3/4 (17)

where

Q � (w2 � p)1/2[(1 � w)2 � p]1/2 (18)

These oscillations are in the directions (w=, v=) obtained by rotating
the (w, v) coordinates by the angle �


w ′ � 
w cos � � 
v sin � 
v ′ � �
w sin � � 
v cos � (19)

where 
 is a small deviation from equilibrium. The angle � is
determined by the following relation:

� �
1

2
tan�1� (1 � 2w)p1/2

w(1 � w) � p� (20)

The quantity Q in (18) is always positive because it contains the
squares of the coordinates. From (17) it is seen that the condition
for both frequencies to be real is

1

1 � w
≥

3w

Q
(21)

For the frequency �− to be real, (17) requires Q ≥ 3w(1 − w). For any
w < 0 (which is the allowed range of w), this inequality is satisfied:
the left-hand side is always positive while the right-hand side is
always negative.

For the frequency �+ to be real, the following function, F(w),
must be positive (in accordance with (17) and (18))

F(w) � (w2 � p)[(1 � w)2 � p] � 9w2(1 � w)2 (22)

After replacing w with 	 = (1 − 1/w)1/3, (22) becomes

F(	) � 	2(	2 � 1)2(1 � 4	2 � 	4)(	3 � 1)�4 (23)

Because the allowed range of w < 0 corresponds to 	 > 1, it is seen
that F(	) is always positive.

Thus, the corresponding classical energy terms correspond to
the stable motion.

3. Electronic motion and the validity of the scenario
Now we unfreeze the slow subsystem and analyse a slow revo-

lution of the axis connecting the proton and electron, the electron
executing a circular orbit. In accordance with the concept of sep-
arating rapid and slow subsystems, the rapid subsystem (the re-
volving muon) follows the adiabatic evolution of the slow
subsystem. This means that the slow subsystem can be treated as
a modified “rigid rotator” consisting of the electron, the proton,
and the ring, over which the muon charge is uniformly distrib-
uted, all distances within the system being fixed (see Fig. 1).

The potential energy of the electron in atomic units (with the
angular momentum term) is

Ee �
M2

2R2
�

1

R
� [�2 � (R � z)2]�1/2 (24)

where M is the electronic angular momentum. Its derivative by R
must vanish at equilibrium, which yields

dEe

dR
� �

M2

R3
�

1

R2
� (R � z)[�2 � (R � z)2]�3/2 � 0 (25)

which gives us the value of the scaled angular momentum

ℓe �
M

R1/2
(26)

corresponding to the equilibrium

ℓe
2 � 1 � (1 � w)[(1 � w)2 � p]�3/2 (27)

where the scaled quantities w and p of the muon coordinates are
defined in (5). Using themuon equilibrium condition from (7) with
v2 denoted p, we can represent (27) in the form

ℓe
2 � 1 � w(w2 � p)�3/2 (28)

After replacing w with 	 = (1 − 1/w)1/3, we obtain

ℓe(	) � [1 � (1 � 	)2(1 � 	 � 	2)1/2(1 � 	 � 	2)�3/2]1/2 (29)

The electron revolution frequency is � =M/R2 = ℓe(	)/R
3/2 given that

M = ℓe(	)R
1/2 in accordance with (26). Because R = L2r(	)/m (see (5))

with r(	) given by (12), then from � = ℓe(	)/R
3/2 we obtain

� �
m3/2ℓe(	)

L3[r(	)]3/2
(30)

From (15) and (30) we find the following ratio of the muon and
electron revolution frequencies:




�
�

m�1/2f(	)[r(	)]3/2

ℓe(	)
(31)

where f(	) is given in (15).
In addition to the preceding relation, R = L2r(	)/m, the same

quantity R can be expressed from (26) as R = M2[ℓe(	)]
�2. Equating

the right-hand sides of these two expressions, we obtain the equal-
ity L2r(	)/m = M2[ℓe(	)]

�2, from which it follows

Fig. 3. The scaled muon revolution frequency, f = (L3/m)
, versus
the scaled internuclear distance, r = (m/L2)R.
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L

M
�

m1/2

ℓe(	)[r(	)]1/2
(32)

The combination of (31) and (32) represents an analytical depen-
dence of the ratio of the muon and electron revolution frequen-
cies 
/� versus the ratio of the muon and electron angular
momenta L/M via the parameter 	 as the latter varies from 1 to ∞.
This dependence is presented in Fig. 4.

For the separation into the rapid and slow subsystems to be
valid, the ratio of frequencies 
/� should be significantly greater
than unity. From Fig. 4 it is seen that this requires the ratio of
angular momenta L/M to be noticeably greater than 20.

There is another validity condition to be checked for this sce-
nario. Namely, the revolution frequency, 
, of the muon must
also be much greater than the inverse lifetime of the muon 1/Tlife,
where Tlife = 2.2 �s = 0.91 × 1011 a.u.: 
Tlife �� 1. Because for almost
all values of R, the muon revolution frequency, 
, is very close to
its maximum value, 
max = m/L3, as shown in Sect. 2, then the
second validity condition can be estimated as (m/L3)Tlife �� 1, from
which it follows

L �� Lmax � (mTlife)1/3 � 26 600 (33)

(recall that m = 206.768 274 6 in atomic units). So, the second
validity condition is fulfilled for any practically feasible value of
the muon angular momentum, L.

Thus, for the ratio of angular momenta L/M noticeably greater
than 20, we deal here with a muonic quasi molecule where the
muon rapidly rotates about the axis connecting the proton and
electron following a relatively slow rotation of this axis.

4. Red shift of spectral lines compared to muonic
hydrogen atoms

The muon, rotating in a circular orbit at frequency 
(R), should
emit a spectral line at this frequency. The maximum value 
max =
m/L3 corresponds to the frequency of spectral lines emitted by the
muonic hydrogen atom (by the �p-subsystem). For the equilib-
rium value of the proton–electron separation — just as for almost
all values of R — the frequency 
 is slightly smaller than 
max.
Therefore, the spectral lines, emitted by the muon in the quasi-

molecule �pe, experience a red shift compared to the correspond-
ing spectral lines that would have been emitted by the muon in a
muonic hydrogen atom. The relative red shift, 
, is defined as
follows:


 �
� � �0

�0

�

max � 




(34)

where � and �0 are the wavelengths of the spectral lines for the
quasi molecule �pe and the muonic hydrogen atom, respectively.
Using (15), the relative red shift can be represented in the form


(	) �
1

f(	)
� 1 (35)

where f(	) is given in (15).
The combination of (35) and (32) represents an analytical depen-

dence of the relative red shift 
 on the ratio of the muon and
electron angular momenta L/M via the parameter 	 as the latter
varies from 1 to ∞. Figure 5 presents the dependence of 
 on
L/(m1/2M). In this form the dependence is “universal” (i.e., valid for
different values of the massm), for example, it is valid also for the
quasi molecule �pe where there is a pion instead of the muon.
Figure 6 presents the dependence of 
 on L/M specifically for the
quasi molecule �pe.

It is seen that the relative red shift of the spectral lines is well
within the spectral resolution ��res/� of available spectrometers:
��res/� � (10−4–10−5) as long as the ratio of the muon and electron
angular momenta, L/M < 80. Thus, this red shift can be observed
and this would be one of the ways to detect the formation of such
muonic negative hydrogen ions.

Figure 7 presents the dependence of the relative red shift 
 on
the ratio of the muon and electron revolution frequencies 
/�. It
is seen that the relative red shift decreases as the ratio of the
muon and electron revolution frequencies increases, but it re-
mains well within the spectral resolution ��res/� of available spec-
trometers.

5. Conclusion
We studied a muonic–electronic negative hydrogen ion. We

demonstrated that in this case, the muonic motion can represent
a rapid subsystem while the electronic motion can represent a
slow subsystem — a result that might seem counterintuitive. In
other words, the muon rapidly revolves in a circular orbit about
the axis connecting the proton and electron while this axis slowly
rotates following a relatively slow electronic motion.

Fig. 4. The ratio of the muon and electron revolution frequencies,

/�, versus the ratio of the muon and electron angular momenta, L/M.

Fig. 5. Universal dependence of the relative red shift, 
, of the
spectral lines of the quasimolecule �pe (or �pe) on L/(m1/2M), which
is the ratio of the muon and electron angular momenta, L/M, divided
by the square root of the mass, m, of the muon or pion.

Kryukov and Oks 719

Published by NRC Research Press

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

D
ep

os
ito

ry
 S

er
vi

ce
s 

Pr
og

ra
m

 o
n 

08
/2

4/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



We used a classical analytical description to find the energy
terms of such a system, (i.e., dependence of the energy of the
muon on the distance between the proton and electron). We
found that there is a double-degenerate energy term. We demon-
strated that it corresponds to a stable motion. We also conducted
an analytical relativistic treatment of the muonic motion, which
is presented in Appendix A. It was found that the relativistic cor-
rections are relatively small. Their relative value is �1/(cL)2 �
0.5 × 10−4/L2 (we remind the readers that here c = 137.036 is the
speed of light in atomic units).

Then we unfroze the slow subsystem and analysed a slow revo-
lution of the axis connecting the proton and electron. The slow
subsystem can be treated as a modified “rigid rotator” consisting
of the electron, the proton, and the ring, over which the muon
charge is uniformly distributed, all distances within the system
being fixed. We derived the condition required for the validity of
the separation into the rapid and slow subsystems.

Finally we showed that the spectral lines, emitted by the muon
in the quasimolecule �pe, experience a red shift compared to the
corresponding spectral lines that would have been emitted by
the muon in a muonic hydrogen atom (in the �p-subsystem). The
relative values of this red shift, which is a “molecular” effect, are
significantly greater than the resolution of available spectrome-
ters and thus can be observed. Observing this red shift should be
one of the ways to detect the formation of such muonic–
electronic negative hydrogen ions.

It should be noted that circular states of atomic and molecular
systems is an important subject in its own right. They have been

extensively studied both theoretically and experimentally for sev-
eral reasons (see, e.g., refs. 14–18 and references therein): (i) they
have long radiative lifetimes and highly anisotropic collision
cross sections, thereby enabling experiments on inhibited spon-
taneous emission and cold Rydberg gases; (ii) these classical states
correspond to quantal coherent states, objects of fundamental
importance; (iii) a classical description of these states is the pri-
mary term in the quantal method based on the 1/n-expansion; and
(iv) they can be used in developing atom chips. In the present
paper we used circular states just to get the message across and to
stimulate further studies of muonic–electronic negative hy-
drogen ions.
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Appendix A. Relativistic treatment of the muonic
motion

The Hamiltonian of the rotating muon is

H � c�m2c2 � pz
2 � p�

2 �
p�
2

�2�1/2
� Z(z2 � �2)�1/2 � Z ′[(R � z)2 � �2]�1/2 � mc2 (A1)

Because � is a cyclic coordinate, the corresponding momentum is
conserved

|p�| � const. � L (A2)

With this substituted into (A1) and taking into account that in a
circular state, pz = p� = 0, we obtain the energy of the muon in a
circular state

E � c�m2c2 �
L2

�2�1/2 � Z(z2 � �2)�1/2 � Z ′[(R � z)2 � �2]�1/2 � mc2

(A3)

Fig. 6. Dependence of the relative red shift, 
, of the spectral lines
of the quasimolecule �pe on the ratio of the muon and electron
angular momenta, L/M.

Fig. 7. Dependence of the relative red shift, 
, on the ratio of the
muon and electron revolution frequencies, 
/�.
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With Z = 1, Z= = −1, and the scaled quantities

w �
z

R
v �

�

R
� � �ER ℓ �

L

mcR
r �

R

L
(A4)

we obtain the scaled energy, �, of the muon

� � (w2 � v2)�1/2 � [(1 � w)2 � v2]�1/2 � mc2R�1 � �1 �
ℓ2

v2�
1/2�

(A5)

The equilibrium condition with respect to the scaled coordinate,
w, is ∂�/∂w = 0, which yields

p(w) � w2/3(w � 1)2/3[w2/3 � (w � 1)2/3] (A6)

where p = v2.
The equilibrium conditionwith respect to the scaled coordinate

v is ∂�/∂v = 0, which yields

ℓ2 � �1 �
ℓ2

p �1/2�(w2 � p)�3/2 � [(1 � w)2 � p]�3/2� p2

mc2R
(A7)

From the relation before last in (A4), we find R = L/(mcℓ). Substitut-
ing this into (A7), we can solve it for ℓ and obtain

ℓ � ��c2L2p4 ��(w2 � p)�3/2 � [(1 � w)2 � p]�3/2��2 �
1

p��1/2

(A8)

From the last two relations in (A4), we find r = 1/(mcℓ); thus

r � �� cL

p2g(w, p)�
2

�
1

p�1/2(mc)�1

g(w, p) � (w2 � p)�3/2 � [(1 � w)2 � p]�3/2

(A9)

where p is given by (A6). Therefore, the quantity r in (A9) is the
scaled “internuclear” distance dependent on the scaled internu-
clear coordinate, w, for a given absolute value of the angular
momentum projection on the internuclear axis, L.

Now we substitute R = L/(mcℓ) and the value of ℓ from (A8), as
well as the value of p from (A6) into (A5), obtaining �(w, L) — the
scaled energy of the muon dependent on the scaled internuclear
coordinate, w, for a given value of the angular momentum, L.
Because E = − �/R and R = rL, E = − �1/Lwhere �1 = �/r. The parametric
dependence E(R), where E = − �1/L and R = Lr, will yield the energy
terms for a given value of L.

After introducing the parameter 	 = (1 − 1/w)1/3, the parametric
dependence takes the following form:

E(	, L) � �mc2�1 � (�6 � �)�1/2� �

�(1 � 	 � 	2)
� �3�� (A10)

R(	, L) �
(L2/m)(�6 � �)1/2

	(1 � 	2)1/2
(A11)

where quantities � and � are defined as follows:

� � �1 � 	2 � 	4

1 � 	2 �1/2 � � �1 � 	3

cL �2 (A12)

The revolution frequency of the muon is

� �
mc2

L �1 �
�

�6 � ��1/2 �

�6 � �
(A13)

Let us check the degree of the relativity of the muon motion.
Figure A1 shows the ratio � of the muon velocity to the speed of
light versus the “internuclear” distance, R, for L = 1 and 3. It is seen
that for all values of R ≈ n2 (n = 1, 2, 3), this ratio is practically equal
to some constant value, �max. It is easy to find that �max = 1/(cL) =
1/(137.036L), because c = 137.036 in a.u.

It is interesting to compare the preceding �max with the corre-
sponding average value of �e for the electron motion in hydrogen
atoms: �e = 1/(cn). So, �max for themuonmotion differs from �e for
the electronmotion in hydrogen atoms only by the substitution of
the principal quantum number, n, of the electron by the angular
momentum quantum number, L, of the muon.

Thus, even for L = 1 (for which �max is the highest), the muon
motion is only weakly relativistic. The relativistic correction to
the average frequency of the muon radiation is �1/(cL)2 (a.u.),
where c = 137.036. Thus, the relative correction is insignificant
even for L � 1 and it rapidly diminishes as L grows: for example, it
is �10−5 for L = 3 and �10−7 for L = 15.

Fig. A1. The ratio, �, of the muon velocity to the speed of light
versus the “internuclear” distance, R (a.u.), for L = 1 (the upper curve)
and L = 3 (the lower curve).
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