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Abstract. In our previous works we studied analytically helical Rydberg states and circular Rydberg states
of two-Coulomb-center systems consisting of two nuclei of charges Z and Z′, separated by a distance R,
and one electron. We obtained energy terms of these Rydberg quasimolecules for a field-free case, as well
as under a static electric field or under a static magnetic field. In the present paper we study such systems
under a laser field. For the situation where the laser field is linearly-polarized along the internuclear axis,
we found an analytical solution for the stable helical motion of the electron valid for wide ranges of the
laser field strength and frequency. We also found resonances, corresponding to a laser-induced unstable
motion of the electron, that result in the destruction of the helical states. For the situation where such
Rydberg quasimolecules are under a circularly-polarized field, polarization plane being perpendicular to
the internuclear axis, we found an analytical solution for circular Rydberg states valid for wide ranges of the
laser field strength and frequency. We showed that both under the linearly-polarized laser field and under
the circularly-polarized laser field, in the electron radiation spectrum in the addition to the primary spectral
component at (or near) the unperturbed revolution frequency of the electron, there appear satellites. We
found that for the case of the linearly-polarized laser field, the intensities of the satellites are proportional
to the squares of the Bessel functions J2

q (s), (q = 1, 2, 3, . . . ), where s is proportional to the laser field
strength. As for the case of the circularly-polarized field, we demonstrated that there is a red shift of the
primary spectral component – the shift linearly proportional to the laser field strength. Under a laser field
of a known strength, in the case of the linear polarization the observation of the satellites would be the
confirmation of the helical electronic motion in the Rydberg quasimolecule, while in the case of the circular
polarization the observation of the red shift of the primary spectral component would be the confirmation
of the specific type of the phase modulation of the electronic motion. Conversely, if the laser field strength is
unknown, both the relative intensities of the satellites and the red shift of the primary spectral component
could be used for measuring the laser field strength.

1 Introduction

Circular states of atomic and molecular systems in gen-
eral, as well as circular Rydberg states (CRS) in particu-
lar, have been extensively studied both theoretically and
experimentally for several reasons (see, e.g., [1–17] and
references therein). Namely: (a) they have long radiative
lifetimes and highly anisotropic collision cross sections,
thereby enabling experiments on inhibited spontaneous
emission and cold Rydberg gases, (b) these classical states
correspond to quantal coherent states, objects of funda-
mental importance, (c) a classical description of these
states is the primary term in the quantal method based
on the 1/n-expansion.

In our previous works [2,4,7,11,12,14,15] we studied an-
alytically circular Rydberg states of two-Coulomb-center
systems consisting of two nuclei of charges Z and Z ′,
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separated by a distance R, and one electron. We obtained
energy terms of these Rydberg quasimolecules for a field-
free case [14,15], as well as under a static electric field [2]
or under a static magnetic field [11], and studied crossings
of the energy terms – the crossings that enhance charge
exchange in these systems.

Our analysis was not confined to circular orbits of the
electron. For example, in paper [15] we studied in detail
helical Rydberg states of these Rydberg quasimolecules.
In order to make those results more transparent, we briefly
outline here the scheme of that analysis. In cylindrical
coordinates (z, ρ, ϕ) with the z-axis along the internu-
clear axis, using the axial symmetry of the problem, the
z- and ρ-motions can be separated from the ϕ-motion.
The ϕ-motion can be then determined from the calcu-
lated ρ-motion. Equilibrium points of the two-dimensional
motion in the zρ-space were studied and a condition dis-
tinguishing between two physically different cases, where
the effective potential energy either has a two-dimensional
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Fig. 1. Sketch of the helical motion of the electron in the
ZeZ′-system at the absence of the magnetic field. We stretched
the trajectory along the internuclear axis to make its details
better visible.

minimum in the zρ-space or has a saddle point in the
zρ-space, was explicitly derived. In particular, it turned
out that the boundary between these two cases corre-
sponds to the point of crossing of the upper and middle
energy terms (out of the three energy terms in this sys-
tem). For the stable motion, the trajectory was found to
be a helix on the surface of a cone, with axis coinciding
with the internuclear axis. In this helical state, the elec-
tron, while spiraling on the surface of the cone, oscillates
between two end-circles which result from cutting the cone
by two parallel planes perpendicular to its axis (Fig. 1).

In the present paper we study such Rydberg quasi-
molecules under a laser field. For the situation where the
laser field is linearly-polarized along the internuclear axis,
we found an analytical solution for the stable helical mo-
tion of the electron valid for wide ranges of the laser field
strength and frequency. We also found resonances, corre-
sponding to a laser-induced unstable motion of the elec-
tron, that result in the destruction of the helical states.
For the situation where such Rydberg quasimolecules are
under a circularly-polarized field, polarization plane be-
ing perpendicular to the internuclear axis, we found an
analytical solution for circular Rydberg states valid for
wide ranges of the laser field strength and frequency. We
showed that both under the linearly-polarized laser field
and under the circularly-polarized laser field, in the elec-
tron radiation spectrum in the addition to the primary
spectral component at (or near) the unperturbed revo-
lution frequency of the electron, there appear satellites.
We found that for the case of the linearly-polarized laser
field, the intensities of the satellites are proportional to
the squares of the Bessel functions J2

q (s), (q = 1, 2, 3, . . .),
where s is proportional to the laser field strength. As for
the case of the circularly-polarized field, we demonstrated
that there is a red shift of the primary spectral component
– the shift linearly proportional to the laser field strength.

We note that quasimolecules based on two ions of
different nuclear charges occur in various plasma exper-
iments. Examples are (but not limited to) the following.
First, in magnetically-controlled fusion machines (such as,

e.g., tokamaks) in addition to the very low-Z ions origi-
nating from the fuel and/or from injected neutral beams,
there occur naturally impurity ions of significantly higher
nuclear charges. Second, in laser-controlled fusion exper-
iments heavy dopants are frequently added to the deu-
terium/tritium fuel for plasma diagnostics, resulting in the
similar situation. Third, plasmas containing ions of differ-
ent nuclear charges are created in those studies of laser-
plasma interaction where the laser radiation is incident on
solid targets composed of several chemical elements. The
fourth example relates to the interaction of the solar wind,
consisting of multicharged ions, with low-Z matter within
the heliosphere.

Since Rydberg atoms form commonly in plasmas due
to the recombination of electrons and positive ions, then
the formation of Rydberg quasimolecules, considered in
the present paper, becomes possible in plasmas containing
ions of different nuclear charges. Specifically, in tokamak
plasmas, the interaction of a neutral beam of hydrogen
or helium (injected for heating and/or diagnostics) with
naturally occurring fully-stripped impurity ions of signif-
icantly higher nuclear charges result in charge exchange.
Due to the resonant nature of the process, electrons are
predominantly transferred to Rydberg states of the im-
purity ions (see, e.g. [18]), thus facilitating the existence
of one-electron Rydberg quasimolecules. Since these are
highly-excited states (n � 1), it is appropriate using the
classical description of these states as the primary term in
the quantal method based on the 1/n-expansion.

2 Analytical solution for the case
of a linearly-polarized laser field

We consider the case where the laser is polarized parallel
to the internuclear axis and oscillates sinusoidally with
the frequency ω. The projection L of the angular mo-
mentum on the internuclear axis is conserved here due
to ϕ-symmetry. The corresponding Hamiltonian is:

H =
p2

ρ + p2
z

2
+

L2

2ρ2
− Z

√
ρ2 + z2

− Z ′
√

ρ2 + (R − z)2

+ zF cosωt. (1)

Below we scale all frequencies using the factor (R3/Z)1/2 :
for example, the scaled laser frequency is μ = ω(R3/Z)1/2.
We also use scaled coordinates as in our papers [14,15]

w =
z

R
, v =

ρ

R
(2)

where R is the internuclear distance. The origin is at the
location of charge Z.

Without the electric field, in an equilibrium orbit,
the motion occurs on the ϕ-coordinate, while the z- and
ρ-coordinates do not change (their time derivatives van-
ish). Thus, for this orbit the first term vanishes in (1),
as well as the last one (due to no electric field), and the
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remaining terms constitute the electron’s equilibrium en-
ergy. Taking the derivatives with respect to the z- and
ρ-coordinates and setting them equal to zero, we obtain
the equilibrium values of the angular momentum and the
ρ-coordinate at any allowed value of the z-coordinate for
a given ratio of charges b = Z ′/Z.

In the vicinity of the equilibrium the motion in
zρ-space corresponds to a two-dimensional harmonic
oscillator [15]. Its scaled eigen-frequencies are

ω±=
1

(w2 + v2
0)

3/4

√√√
√
√

1
1 − w

± 3w
√

(w2 + v2
0)

(
(1 − w)2 + v2

0

)

(3)

where the equilibrium value of v (denoted as v0) is
connected to w as follows [14,15]:

v0(w, b) =

√√
√√w2/3(1 − w)4/3 − b2/3w2

b2/3 − w2/3(1 − w)−2/3
(4)

(we remind that b = Z ′/Z). The motion occurs on the
axes (w′, v′), which are the original axes (w, v) rotated by
an angle α given in [15]. The dependence of the angle α
on the scaled coordinate w can be expressed in the most
compact form by introducing the notation:

γ =
(

1
w

− 1
)1/3

. (5)

In the γ-representation it has the form

α =
1
2

arctg

√(
b2/3γ2 − 1

) (
γ4 − b2/3

)

γ
(
b2/3 + γ

) . (6)

The scaled eigen-frequencies ω− and ω+ are the scaled fre-
quencies of small oscillations about the equilibrium along
the coordinates w′, v′ accordingly.

As we introduce the oscillating electric field, these os-
cillations become forced, with the forces F cos α cos ωt on
w′ and F sin α cos ωt on v′. Therefore, the deviations from
equilibrium on (w′, v′) are (see, e.g., textbooks [19,20])

δw′ =
f cos α

ω2− − μ2
cos μτ, δv′ =

f sin α

ω2
+ − μ2

cos μτ (7)

where f = F (R2/Z), μ = ω(R3/Z)1/2 and τ =
t(Z/R3)1/2. Now we revert to the original coordinates
(w, v) and obtain the equations of motion in the linearly-
polarized oscillatory electric field in the vicinity of the
equilibrium: the electron follows the circular path corre-
sponding to the case with no electric field with deviations
from equilibrium depending on the scaled time τ :

δw = f

(
cos2 α

ω2− − μ2
+

sin2 α

ω2
+ − μ2

)
cosμτ,

δv = f sin α cosα

(
1

ω2− − μ2
− 1

ω2
+ − μ2

)
cosμτ (8)

Fig. 2. The calculated trajectory of the electron in the linearly-
polarized laser field for b = 3, f = 1, μ = 1 at w = 0.2. The
z-axis is along the internuclear axis.

From equation (8) it is seen that the strength and fre-
quency of the laser field affect the amplitudes of the forced
oscillations on w- and v-axes; in fact, these amplitudes are
proportional to the field strength f . The frequencies of the
forced oscillations on the axes are equal to that of the laser
field, instead of ω− and ω+.

Since the Hamiltonian from equation (1) does not
depend on ϕ, the corresponding momentum is conserved:

pϕ = ρ2 dϕ

dt
≡ L = const. (9)

We can re-write equation (9) in the scaled notations as:

dϕ

dτ
=

l

v2(τ)
(10)

where 	 = L/(ZR)1/2 is the scaled angular momentum.
Substituting in equation (10) v(τ) = v + δv(τ), where
v(w) is the equilibrium value of the scaled radius v of
the electron orbit from equation (4) and δv(τ) is given by
equation (8), we obtain

dϕ

dt
≈ l

v2
0

− 2l

v3
0

δv(τ) (11)

which after the integration with respect to time yields:

ϕ(t) ≈ l

v2
0

τ − 2l

μv3
0

f sin α cosα

(
1

ω2−−μ2
− 1

ω2
+−μ2

)
sin μτ.

(12)

From equation (12) it is seen that the ϕ-motion is a ro-
tation about the internuclear axis with the scaled fre-
quency 	/v2, slightly modulated by oscillations of the
scaled radius of the orbit v at the laser frequency μ (i.e.,
at the laser frequency ω in the usual notation).

Thus, from equations (8) and (12) it is clear that the
electron is bound to a conical surface which incorporates
the original circular orbit. In Figure 2 below the calculated
three-dimensional trajectory is plotted for b = 3, f = 1,
μ = 1 at w = 0.2.
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The expression for ϕ(τ) from equation (12), i.e.,
ϕ[t(Z/R3)1/2], enters the following Fourier-transform that
determines the amplitude of the power spectrum of the
electron radiation

Al(Δ) =
1
π

∫ ∞

0

dt cos

(

Δt − ϕ

(

t

√
Z

R3

))

(13)

where Δ is the radiation frequency measured, e.g., by
a spectrometer. This is the standard expression for the
case of a phase modulation of the atomic oscillator (see,
e.g., [21]). The sinusoidal modulation of the phase ϕ is
analogous to the situation where hydrogen spectral lines
are modified by an external monochromatic field at the
frequency ω, the latter problem being solved analytically
by Blochinzew as early as in 1933 [22] (a further study
can be found, e.g., in book [23]).

From Blochinzew’s results it follows for our case in
the electron radiation spectrum, this helical motion should
manifest as follows. The most intense emission would be at
the frequency Ω = dϕ/dt of the rapid ϕ-motion. In addi-
tion, there will be satellites at the frequencies Ω ± qω,
where q = 1, 2, 3, . . ., whose relative intensities Iq are
controlled by the Bessel functions Jq(s):

Iq = (Jq(s))
2
, s=

2l

μv3
0

f sin α cosα

(
1

ω2− − μ2
− 1

ω2
+ − μ2

)
.

(14)

The oscillatory motion of the electron in the zρ-space with
the laser frequency ω should lead also to the radiation
at this frequency. However, since ω � Ω, this spectral
component would be far away from the primary spectral
line and its satellites.

From equation (8) it is also seen that there are res-
onances when the laser frequency is equal to one of the
eigen-frequencies of the motion in the zρ-space, i.e., when
either μ = ω+ or μ = ω−. It turns out that these con-
ditions yield three resonance points on the w-axis for the
laser field frequency μ below a certain critical value μc, or
five resonance points for μ > μc – see the figures below.
(We note that the regions, where ω+(w) and ω−(w) are
not plotted, correspond to the situation where the equi-
librium value of the scaled coordinate v0(w, b) ceases to
be real.)

For instance, in the case of b = 3, for μ = 8, we ob-
serve resonances at the following five values of w: 0.02883,
0.1106, 0.2497, 0.9852, 0.9878. The critical value corre-
sponds to the minimum of ω+(w) for a given b in the inter-
val 0 < w < w1 at the equilibrium point (the equilibrium
scaled coordinate v being expressed via w by Eq. (4)).
Calculating the derivative of ω+ with respect to w and
setting it equal to zero, we find the point of the minimum.
The value of ω+ at this point will be equal to the crit-
ical value of the scaled laser frequency μc. For example,
for b = 3 at w = 0.17642 (the minimum of ω+ in Figs. 3
and 4) this critical value is μc = 7.5944. As the ratio of nu-
clear charges b increases, so does also the critical value μc

of the scaled laser frequency.

Fig. 3. Eigen-frequencies of the motion in the zρ-space ω+

(solid curves) and ω− (dashed curves) versus w, i.e., versus
the scaled z-coordinate of original circular Rydberg state. The
scaled laser frequency μ is shown by the horizontal straight
line. The plot is for b = 3 and μ = 4. Three resonant points
are seen.

Fig. 4. Same as in Figure 3, but for b = 3 and μ = 9. Five
resonant points are seen.

These resonances correspond to a laser-induced unsta-
ble motion of the electron that result in the destruction of
the helical states. This is illustrated in Figure 5 showing
the calculated three-dimensional trajectory of the electron
(for various directions of its initial velocity) for a reso-
nance case where b = 3, f = 1, μ = 8, and w = 0.111
(w = 0.111 is one of the three values of w, at which the
laser frequency μ coincides with the eigen-frequency ω+).
A striking difference is seen compared to the stable helical
motion depicted in Figure 2: the resonance destroyed the
helical state – electrons are radially ejected.

3 Analytical solution for the case
of a circularly-polarized laser field

Now we consider the case of a circular polarization of the
laser field, polarization plane being perpendicular to the
internuclear axis. The laser field varies as:

F = F (ex cosωt + ey sinωt) (15)

where ex and ey are the unit vectors along the x-
and y-axes, F is the amplitude and ω is the frequency.
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Fig. 5. The calculated trajectory of the electron (for various
directions of its initial velocity) in the linearly-polarized laser
field for a resonance case where b = 3, f = 1, μ = 8, and
w = 0.111. The z-axis is along the internuclear axis.

The Hamiltonian for the electron in this configuration will
take the following form:

H =
1
2

(

p2
ρ + p2

z +
p2

ϕ

ρ2

)

− Z
√

ρ2 + z2
− Z ′

√
ρ2 + (R − z)2

+ Fρ cos (ϕ − ϕ0) (16)

where we introduced ϕ0 = ωt. As in our paper [15], we
consider ϕ-motion to be the rapid subsystem, i.e. dϕ/dt is
much greater than the laser frequency ω and the frequen-
cies of z- and ρ-motion. The canonical equations for the
ϕ-motion obtained from equation (16) are:

dϕ

dt
=

∂H

∂pϕ
=

pϕ

ρ2
(17)

dpϕ

dt
= −∂H

∂ϕ
= Fρ sin (ϕ − ϕ0) . (18)

Combining (17) and (18), we get

d2ϕ

dt2
=

F

ρ
sin(ϕ − ϕ0). (19)

After a substitution ϕ − ϕ0 = θ + π, equation (19)
becomes

d2θ

dt2
= −F

ρ
sin θ (20)

which is the equation of motion of a mathematical pen-
dulum of length ρ in gravity F . Its two possible modes
are libration and rotation; since θ is the rapid coordinate,
we have the case of rotation. The solution for θ(t) is well-
known and can be expressed in terms of Jacobi amplitude:

θ(t) = 2am
(

Ωt

2
,

4F

ρΩ2

)
(21)

Fig. 6. The power spectrum of the electron radiation P (in
arbitrary units) versus the dimensionless radiation frequency
Δ/Ω for the case where 4F/(ρΩ) = 0.1. Here Ω is the fre-
quency of the electron radiation at the absence of the laser
field. A certain width is assigned to all spectral components to
display a continuous spectral line profile.

Here we denoted dθ/dt at t = 0 as Ω. For rapid rota-
tions, the change in the angular speed on θ is insignificant
compared to the initial speed and dθ/dt ≈ Ω.

The expression for θ(t) enters the following Fourier-
transform that determines the amplitude of the power
spectrum of the electron radiation:

Ac

(
Δ,

4F

ρΩ2

)
=

1
π

∫ ∞

0

dt cos
(

Δt − θ

(
t,

4F

ρΩ2

))
.

(22)

Figure 6 shows as an example the power spectrum of
the electron radiation spectrum (i.e., A2

c) versus the di-
mensionless radiation frequency Δ/Ω for the case where
4F/(ρΩ) = 0.1. It is seen that the most intense compo-
nent in the spectrum is at the frequency Δ approximately
equal to, but slightly less than Ω. It is also seen that the
laser modulation of the primary frequency of the electron
rotation results in a series of relatively small satellites of
the primary spectral component.

The red shift of the primary spectral component can
be calculated analytically as follows. Since ϕ-motion is
rapid, we can average the Hamiltonian in equation (16)
wth respect to time. Integrating equation (20) with the
initial condition dθ/dt = Ω, we get

Ω2 −
(

dθ

dt

)2

=
4F

ρ
sin2 θ

2
. (23)

By averaging this equation with respect to time, we obtain

Ω2 −
〈(

dθ

dt

)2
〉

=
2F

ρ
. (24)

Thus, the ϕ-momentum term in the Hamiltonian (16)
becomes

〈
p2

ϕ

ρ2

〉

= ρ2

〈(
dθ

dt

)2
〉

= ρ2Ω2

(
1 − 2F

ρΩ2

)
(25)

The last term in the Hamiltonian from (16) vanishes after
the time averaging so that the time-averaged Hamiltonian
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depends only on ρ- and z-coordinates and their corre-
sponding momenta. The result is the following quasi-
stationary Hamiltonian with no explicit time dependence:

H =
1
2

(
p2

ρ+p2
z

)− Z
√

ρ2+z2
− Z ′

√
ρ2+(R−z)2

+
1
2
ρ2Ω2−ρF.

(26)
Introducing the scaled quantities

w =
z

R
, v =

ρ

R
, f =

FR2

Z
, σ = Ω

√
R3

Z
(27)

and using the Hamiltonian equations, we obtain the
following two differential equations of motion:

−d2w

dτ2
=

w

(w2 + v2)3/2
− b(1 − w)

(
(1 − w)2 + v2

)3/2
(28)

−d2v

dτ2
=v

(
1

(w2+v2)3/2
+

b

((1−w)2+v2)
3/2

+σ2

)

−f

(29)

(where the differentiation is by the scaled time τ =
t(Z/R3)1/2).

In this section we consider these Rydberg quasi-
molecules in circular (not helical) states, so that the plane
of the electron orbit has a stationary position on the in-
ternuclear axis. Therefore, the right-hand side of equa-
tion (28) vanishes and the relationship between w and v
becomes the same as given by equation (4). This makes
the scaled radius of the orbit v a constant as well.

Since the angular momentum is L = Ωρ2 for a sta-
tionary circular orbit, the averaging of the ϕ-momentum
in equation (25) is equivalent to changing L for
L(1 − Fρ3/L2). Using scaled units and the relationship
L = Ωρ2, we find out that the case of the circularly-
polarized laser field is equivalent to a field-free case, but
with an effective frequency Ω given by the substitution:

Ω → Ω (1 − κ(γ)f) (30)

where

κ(γ) =
γ6

(
γ3 − 1

)3/2(
γ4 − b2/3

)3/2

(γ3 + 1)11/2(
b2/3γ2 − 1

)3 . (31)

The quantity Ωκ(γ)f is the red shift of the primary spec-
tral component. This result is valid as long as the relative
correction κ(γ)f to the unperturbed angular frequency Ω
of the electron remains relatively small. Figures 7 and 8
illustrate the situation for the case where the ratio of the
nuclear charges is b = 2. On the horizontal axis is the
scaled coordinate w, i.e., the scaled coordinate along the
internuclear axis of the Rydberg quasimolecule. The solid
curve, having two branches, shows the unperturbed angu-
lar frequency Ω of the electron. The dashed curve shows
the correction Ωκ(γ)f . It is seen that the correction re-
mains relatively small for the entire left branch of Ω and

Fig. 7. Dependence of the unperturbed angular frequency Ω
of the electron (solid curve, two branches) and of the correction
Ωκ(γ)f for f = 1 (dashed curve) on the scaled coordinate w
along the internuclear axis of the Rydberg quasimolecule.

Fig. 8. The same as in Figure 7, but with better visible details
in the region of the right branch of Ω(w).

for a significant part of the right branch of Ω. (Figs. 7
and 8 differ only by the range of the vertical scale, so that
Fig. 7 allows to see more clearly the region where the solid
and dashed curves intersect and the region of validity of
the results for the right branch of Ω.) Physically, the left
branch corresponds to the situation where the electron is
primarily bound by the charge Z. The region of the right
branch, where the correction is relatively small, physically
corresponds to the situation where the electron is primar-
ily bound by the charge Z ′.

4 Conclusions

While studying diatomic Rydberg quasimolecules under
a laser field that is linearly-polarized along the internu-
clear axis, we found an analytical solution for the stable
helical motion of the electron valid for wide ranges of the
laser field strength and frequency. Namely, the linearly-
polarized laser field makes the motion in the zρ-space
to be forced oscillations at the frequency of the laser
field. We also found resonances, corresponding to a laser-
induced unstable motion of the electron, that result in
the destruction of the helical states. For the situation
where such Rydberg quasimolecules are under a circularly-
polarized field, polarization plane being perpendicular to
the internuclear axis, we found an analytical solution for
circular Rydberg states valid for wide ranges of the laser
field strength and frequency.

We showed that both under the linearly-polarized laser
field and under the circularly-polarized laser field, in the
electron radiation spectrum in the addition to the primary
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spectral component at (or near) the unperturbed revo-
lution frequency of the electron, there appear satellites.
We found that for the case of the linearly-polarized laser
field, the intensities of the satellites are proportional to
the squares of the Bessel functions J2

q (s), (q = 1, 2, 3, . . .),
where s is proportional to the laser field strength. As for
the case of the circularly-polarized field, we demonstrated
that there is a red shift of the primary spectral compo-
nent – the shift linearly proportional to the laser field
strength. We note that in quantum mechanics, spectral
satellites can be best described using the formalism of
quasienergy states, such as the states of the combined sys-
tem “Rydberg quasimolecule + laser field” (see, e.g., [23]).

Under a laser field of a known strength, in the case
of the linear polarization the observation of the satellites
would be the confirmation of the helical electronic mo-
tion in the Rydberg quasimolecule, while in the case of
the circular polarization the observation of the red shift
of the primary spectral component would be the confir-
mation of the specific type of the phase modulation of the
electronic motion described by equation (15). Conversely,
if the laser field strength is unknown, both the relative in-
tensities of the satellites and the red shift of the primary
spectral component could be used for measuring the laser
field strength.
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