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Abstract
Calculations of continuum lowering (CL) in plasmas evolved from ion sphere models to
dicentre models of the plasma state. One of such theories—a percolation theory—calculated
CL defined as an absolute value of energy at which an electron becomes bound to a
macroscopic portion of plasma ions (a quasi-ionization). Previously one of us derived
analytically the value of CL in the ionization channel which was disregarded in the percolation
theory. In the present paper we study how the value of CL in the ionization channel is affected
by plasma screening, electric and magnetic fields. We show that the screening and the
magnetic field decrease the value of CL, inhibiting the ionization, while the electric field
increases the value of CL, promoting the ionization. These results should be important for
inertial fusion, x-ray lasers, powerful Z-pinches, astrophysics and other applications of
high-density plasmas. We also show that the screening stabilizes the nuclear motion of the
corresponding Rydberg quasimolecules in some cases and destabilizes it in other cases.

(Some figures may appear in colour only in the online journal)

1. Introduction

Continuum lowering (hereafter, CL) is a fundamental concept
of atomic physics in plasmas. It refers to the fact that the
energy required to ionize is reduced compared to its value in
vacuum. This is because highly excited states above a certain
threshold disappear from the discrete spectrum. The higher the
plasma density, the more significant CL becomes. It defines the
existing energy states and affects their absorption and emission
properties. CL is important for inertial fusion, x-ray lasers,
astrophysics and other applications of high-density plasmas.
It is usually included in most comprehensive simulations of
atomic physics in plasmas. CL plays a key role in calculations
of the equation of state, partition function, bound-free opacities
and other collisional atomic transitions in plasmas.

CL has been studied for over 50 years—see, e.g.,
books/reviews [1–5] and references therein. Calculations of
CL evolved from ion sphere models to dicentre models of the
plasma state [3, 6–11]. One of such theories—a percolation
theory [3, 8]—calculated CL defined as an absolute value of
energy at which an electron becomes bound to a macroscopic

portion of plasma ions (a quasi-ionization). In 2001 one of
us derived analytically the value of CL in the true-ionization
channel which was disregarded in the percolation theory:
a quasimolecule, consisting of the two ion centres plus an
electron, can get ionized in the true sense of this word before
the electron would be shared by more than two ions [12]. In
other words, the distinction between the quasi-ionization (i.e.,
the percolation theory) and the true ionization is the following.
The basic process in the percolation theory is the tunnelling of
the electron between the two adjacent ionic potential wells. But
this means that the electron is still a part of the quasimolecule
consisting of the two adjacent ions and the electron, i.e.,
the electron is still bound. However, it is well-known from
molecular physics that any molecule or quasimolecule can
actually lose an electron, i.e., get truly ionized. This represents
the true-ionization channel of CL—in addition to the quasi-
ionization channel of the percolation theory.

It was also shown in [12] that, whether the electron is
bound primarily by the smaller or by the larger out of two
positive charges Z and Z′, makes a dramatic qualitative and
quantitative difference for this ionization channel. The results
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in [12] were obtained for circular states of the corresponding
Rydberg quasimolecules.

Circular Rydberg states of atomic and molecular systems
having one electron, in the quantal language correspond to
|m| = n − 1 � 1, where m and n are the principal and
magnetic electronic quantum numbers, respectively. They have
been extensively studied both theoretically and experimentally
[13–16]. Classically these states correspond to the electron
orbit being a circle perpendicular to and centred at the
internuclear axis.

In the present paper we study how three different factors
affect the value of CL in the ionization channel. The first factor
is the screening by plasma electrons that was disregarded in
[12]. The second factor is an electric field. It represents (in a
model way) a quasistatic ion microfield due to contributions
of all ions except the two ions included in the dicentre. The
third factor is a magnetic field. Relevant applications of the
latter include (but are not limited to) laser fusion, where a
strong magnetic field can be generated in the process of the
laser–plasma interaction [17, 18], and powerful Z-pinches used
for producing x-ray and neutron radiation, ultra-high pulsed
magnetic fields and for x-ray lasing (see, e.g., [19]). We show
that the screening and the magnetic field decrease the value of
CL, inhibiting the ionization, while the electric field increases
the value of CL, promoting the ionization.

We also study the effect of the screening on crossings
of energy terms and on the stability of the nuclear motion of
the corresponding Rydberg quasimolecules. We show that the
screening stabilizes the nuclear motion in the case of Z = 1
and destabilizes it in the case of Z > 1.

2. Calculation of the effect of plasma screening on
classical energy terms of Rydberg quasimolecules in
circular states

Plasma screening of a test charge is a well-known
phenomenon. For a hydrogen atom or a hydrogen-like ion
(an H-atom, for short), it is effected by replacing the pure
Coulomb potential by a screened Coulomb potential which
contains a physical parameter—the screening length a. For
example, the Debye–Hückel (or Debye) interaction of an
electron with the electronic shielded field of an ion of charge Z
is U(R) = −(Ze2/R)exp(−R/a), where a = (kT/(4πe2Ne))1/2 ≈
1.304 × 104(1010/Ne)1/2T1/2a0, where Ne (cm−3) and T (K) are
the electron density and temperature, respectively.

We study a two-Coulomb centre (TCC) system with the
charge Z placed at the origin, and the Oz axis directed at the
charge Z′, which is at z = R, the system being in a plasma
of a screening length a. We consider the circular orbits of the
electron which are perpendicular to the internuclear axis and
centred on the axis.

Two quantities, the energy E and the projection L of the
angular momentum on the internuclear axis are conserved in
this configuration. We use cylindrical coordinates (ρ, ϕ, z),
which are related to the Cartesian coordinates as x = ρ cos ϕ,
y = ρ sin ϕ, z = z, to write the equations for both:

E = 1

2
(ρ̇2 + ρ2ϕ̇2 + ż2) − Z

r
e−r/a − Z′

r′ e−r′/a (1)

L = ρ2ϕ̇, (2)

where r and r′ are distances from the electron to Z and Z′. The
circular motion implies that dρ/dt = 0; as the motion occurs
in the plane perpendicular to the z-axis, dz/dt = 0. Further,
expressing r and r′ through ρ and z, and taking dϕ/dt from
(2), we have:

E = L2

2ρ2
− Z√

ρ2 + z2
e−

√
ρ2+z2/a

− Z′√
ρ2 + (R − z)2

e−
√

ρ2+(R−z)2/a. (3)

With the scaled quantities

w = z

R
, p =

(ρ

R

)2
, b = Z′

Z
, ε = −ER

Z
,

� = L√
ZR

, λ = R

a
, r = ZR

L2
(4)

our energy equation takes the form below:

ε = e−λ
√

w2+p√
w2 + p

+ b e−λ
√

(1−w)2+p√
(1 − w)2 + p

− �2

2p
. (5)

We can seek the equilibrium points by finding partial
derivatives of ε by the scaled coordinates w, p and setting them
equal to zero. This will give the following two equations:

w e−λ
√

w2+p

w2 + p

(
1√

w2 + p
+ λ

)
= b(1 − w) e−λ

√
(1−w)2+p

(1 − w)2 + p

×
(

1√
(1 − w)2 + p

+ λ

)
, (6)

�2

p2
= e−λ

√
w2+p

w2 + p

(
1√

w2 + p
+ λ

)
+ b e−λ

√
(1−w)2+p

(1 − w)2 + p

×
(

1√
(1 − w)2 + p

+ λ

)
. (7)

From the definitions of the scaled quantities (4), we
have �2 = 1/r and E = − (Z/R) ε. Since r = ZR/L2, then
E = − (Z/L)2 ε/r, where r = 1/�2 can be obtained by
solving (7) for �. Thus, the scaled energy without explicit
dependence on R is ε/r, which we shall denote ε1. Using this,
equations (5)–(7) can be transformed into the following three
master equations for this configuration:

ε1 =
(

p(1 + λ
√

w2 + p) e−λ
√

w2+p

(1 − w)(w2 + p)3/2

)2

×
(

(1 − w)(w2 + p)

1 + λ
√

w2 + p
+ w((1 − w)2 + p)

1 + λ
√

(1 − w)2 + p
− p

2

)
,

(8)

r = (1 − w)(w2 + p)3/2 eλ
√

w2+p

p2(1 + λ
√

w2 + p)
, (9)

w(1 + λ
√

w2 + p) e−λ
√

w2+p

(w2 + p)3/2

= b(1 − w)(1 + λ
√

(1 − w)2 + p) e−λ
√

(1−w)2+p

((1 − w)2 + p)3/2
. (10)
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Figure 1. Contour plot of equation (10) for b = 3, λ = 0.1 (solid
curves) and for b = 3, λ = 2 (dashed curves).

The quantities ε1 and r now depend only on the
coordinates w and p (besides the constant λ). Therefore, if
we solve (10) for p and substitute it to (8) and (9), we obtain
the parametric solution for the energy terms ε1(r) with the
parameter w for the given b and λ.

Equation (10) does not allow an exact analytical solution
for p. Therefore, we will use an approximate analytical method.

Figure 1 is the contour plot of this equation for b = 3 and
λ = 0.1 (solid curves) and λ = 2 (dashed curves).

As in [21, 22], which presented the study of the same
ZeZ′ system for λ = 0, the plot has two branches, the left one
spanning from w = 0 to w = w1, and the right one from the
asymptote w = w3 to w = 1. Here w1 is a solution of the
equation

(1 − w1)
2(1 + λw1) eλ(1−2w1 ) = bw2

1(1 + λ(1 − 2w1)), (11)

in the interval 0 < w1 <1, and w3 does not depend on λ and
equals b/(1 + b)—the same as in [21, 22] for λ = 0. As λ

increases, w1 and the p-coordinate of the maximum of the
left branch increase, but the general shape of both curves is
preserved (figure 1).

An approximation was made for small values of λ.
Approximating (10) in the first power of λ, we obtain the
expression involving only the second and higher powers of λ.
Therefore, an attempt was made using the value of p(w) for
λ = 0 presented in [22], which we shall denote as p0; it is the
same as the squared quantity in equation (11) in [22]. Further,
taking the higher powers of λ into account, we obtained the
next-order approximation for p(w):

p(w) = p0 + λ2

6
(1 − 2w)

(
1 + (1 − 2w)

×
(

w2/3 + b2/3(1 − w)2/3

w2/3 − b2/3(1 − w)2/3

)2 )
(12)

where

p0 = w2/3(1 − w)4/3 − b2/3w2

b2/3 − w2/3(1 − w)−2/3
(13)

—the zero-λ value as in equation (11) in [22].

Figure 2. Approximate classical energy terms for b = 3 at λ = 0.1
(solid curves) and at λ = 0.3 (dashed curve). For the top two terms
(forming a V-crossing) the solid and dashed curves practically
coincide.

Figure 3. Numerical (red, thicker lines) and analytical (blue, thinner
lines) classical energy terms for b = 3 at λ = 0.2.

Equation (11) of the present paper can be approximated
by substituting 1 + λ(1– 2w1) in place of exp(λ(1 – 2w1)),
which will render it a fourth-degree polynomial in w1.

Substituting (12) into (8) and (9), we obtain the
approximate parametric solution for the classical energy terms
−ε1(r) by running the parameter w on 0 < w < w1 and
w3 < w <1. Empirically, by comparison with the numerical
results, it was found that using the value of p from (13) on the
0 < w < w1 range and from (12) on the w3 < w < 1 range gives
the best approximate results. Figure 2 shows the approximate
classical energy terms for b = 3 and different values of λ.

A numerical solution has also been made. We solved (10)
numerically for p and substituted it into (8) and (9), thus
obtaining the parametric dependence ε1(r) via parameter w

for the given b and λ. It confirmed that the analytical solution
was a good approximation for λ < 0.3. Figure 3 depicts terms
plotted for selected values of λ.

3
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Figure 4. Numerical (red, thicker lines) and analytical (blue, thinner
lines) classical energy terms for b = 3 at λ = 1.

Figure 5. Numerical (red, thicker lines) and analytical (blue, thinner
lines) classical energy terms for b = 3 at λ = 3.

The following clarification should be made. The plots
in figures 3–5 represent ‘classical energy terms’ of the
same symmetry. (In the physics of diatomic molecules, the
terminology ‘energy terms of the same symmetry’ means the
energy terms of the same projection of the angular momentum
on the internuclear axis.) For a given R and L, the classical
energy E takes only several discrete values. However, as L
varies over a continuous set of values, so does the classical
energy E (as it should be in classical physics).

We note that in case of small or moderate λ, we observe
four terms, both pairs of which have a V-type crossing—the
common point of two terms which also corresponds to the
minimum internuclear distance for both (the shape of the two
terms next to the crossing resembles a rotated letter V). As
an example, we shall take the plot of the terms for λ = 1
(figure 4) and number the lowest term 1 and the highest term
2; the remaining terms will be numbered 3 and 4, from the

Figure 6. The plot of the continuum lowering (CL) energy versus b
on a double-logarithmic scale for λ = 0 (solid curve), λ = 0.1
(dashed curve), λ = 0.5 (dot–dashed curve) and λ = 2 (dotted
curve).

lower one to the higher one. Therefore, terms 1 and 2 and
terms 3 and 4 undergo V-type crossings, to which we shall
refer to as V12 and V34.

3. Plasma screening effects on the continuum
lowering in the ionization channel

Our analysis of the stability of the electronic motion shows
results similar to those obtained by one of us previously in
[21, 22]. Namely, term 3 corresponds to a stable motion while
term 4—to an unstable motion. So, the crossing point of terms
3 and 4 corresponds to the transition from the stable motion
to the unstable motion, leading the electron to the zero energy
(i.e., to the free motion) along term 4, which constitutes the
ionization of the molecule.

Therefore, we arrive at the following. For the ionization
of the hydrogen-like ion of the nuclear charge Zmin perturbed
by the charge Zmax, it is sufficient to reach the scaled energy
εc(b) = ε(wV34(b), b) < 0. At that point, the electron
switches to the unstable motion and the radius of its orbit
increases without a limit. This constitutes CL by the amount of
Z〈1/R〉 |ε(wV34(b), b)|, where 〈1/R〉 is the value of the inverse
distance of the nearest neighbour ion from the radiating ion
averaged over the ensemble of perturbing ions.

Thus, obtaining CL in the ionization channel requires
calculations of the scaled energy ε at the crossing point wV34 of
terms 3 and 4. These calculations are presented in appendix A.

CL for the ‘default’ (λ = 0) TCC system was
studied in [12]. Particularly, the scaled CL energy
εc(b) = ε(wV34(b), b) = �E/(Z〈1/R〉) was graphed on a
double-logarithmic scale, where ε is defined in (4) and wV34 is
given by (A.7). It is presented in figure 6 by the solid curve;
‘lg x’ stands for ‘log10 x’.

In figure 6 we have also presented plots of εc(b) for three
different non-zero values of λ. A numerical value for wV34 was
taken to increase precision.

From figure 6 we can see that the plasma screening
decreases the value of CL in the ionization channel. Also,
starting from about λ = 1.7, we observe the ‘cutoff’ value of
b > 1, below which εc becomes negative, i.e., the electron
energy at wV34 becomes positive. This means that there is no

4
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Figure 7. The plot of the continuum lowering (CL) energy versus b
for λ = 2 (solid curve) and λ = 3 (dashed curve).

more CL in this ionization channel—instead, the continuum
becomes higher than for the isolated hydrogen-like ion of
the nuclear charge Z. This effect cannot be observed in the
logarithmic graphs in figure 6 because the cutoff value of
energy (zero) corresponds to lg εc = −∞. In figure 7, we have
plotted the linear, non-logarithmic plots of εc(b) for selected
values of λ at which this effect is observed.

In figure 7 we can see that at λ = 3 there is no CL, for
example, for b = 2 and b = 3.

4. Electric field effects on the continuum lowering in
the ionization channel

Using the value of the scaled energy of the electron in the TCC
system given in equation (5) of paper [20] with the substitution
of the numeric or approximate solution for p from (10) into
(5) and (7) and the further substitution of � from (7) into (5)
(all equations are from [20]), we obtain the dependence of the
scaled energy on the scaled coordinate w in the situation where
the electric field is parallel to the internuclear axis:

ε = w2 + p/2

(w2 + p)3/2
+ b((1 − w)2 + p/2)

((1 − w)2 + p)3/2
+ f w, (14)

where f = (R2/Z)F is the scaled electric field and p is
determined by the equation

f + b(1 − w)

((1 − w)2 + p)3/2
= w

(w2 + p)3/2
. (15)

Then we numerically find the point on the w-axis
corresponding to the V34 crossing for a given value of the
scaled electric field f . The V34 crossing corresponds to the
minimum of function r(w) for the given b and f (similar to
(9)) in the range 0 < w < w1:

r = p−2

(
1

(w2 + p)3/2
+ b

((1 − w)2 + p)3/2

)−1

, (16)

where p is determined by (15) as well. We find numerically
the value w of the minimum and substitute it into the formula
for the scaled energy, obtaining the critical energy, which is
the value of CL.

In figures 8–10, the logarithmic plots (lg εc versus lg b)
were made for selected values of f .

It is seen that CL increases as the electric field increases.
This is expected because the electric field promotes ionization.

Figure 8. The plot of the continuum lowering (CL) energy versus b
for f = 0.1.

Figure 9. The plot of the continuum lowering (CL) energy versus b
for f = 1.

Figure 10. The plot of the continuum lowering (CL) energy versus b
for f = 10.

5. Magnetic field effects on the continuum lowering
in the ionization channel

In the case of the magnetic field B parallel to the internuclear
axis, the default (λ = 0) energy

E = L2

2ρ2
− Z√

z2 + ρ2
− Z′√

(R − z)2 + ρ2
(17)

will acquire an additional term

	L + 	2ρ2

2
(18)

where 	 = B/(2c) is the Larmor frequency. We apply the
same method as we used before to find the energy dependent
on one spatial parameter. Substituting the scaled quantities as
defined in (4) and defining ω = 	L3/Z2, taking the derivatives
by w and p and setting them equal to zero, solving for p and

5
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Figure 11. The plot of the continuum lowering (CL) energy versus b
on a double-logarithmic scale for ω = 0.5 (solid curve), ω = 1
(dashed curve) and ω = 2 (dotted curve).

Figure 12. The plot of the continuum lowering (CL) energy versus b
for ω = 2.8 (solid curve) and ω = 4.3 (dashed curve).

�, substituting them back into the formula for energy, and
further substituting the parameter γ as given in equation (A.3)
in appendix A, we arrive at the following expressions of the
scaled energy ε = −ER/Z; and the scaled internuclear distance
r:

ε = (γ 4 − 2γ + b2/3(2γ 3 − 1))
√

(γ 3 + 1)(b2/3γ 2 − 1)

2γ (γ 3 − 1)3/2

+ γ 2(b2/3 − γ 4)

(γ 3 + 1)2(b2/3γ 2 − 1)

×ω

⎛
⎝ω +

√
ω2 + (γ 3 + 1)5/2(b2/3γ 2 − 1)3/2

γ 3(γ 3 − 1)3/2

⎞
⎠ , (19)

r = (γ 3 + 1)4(b2/3γ 2 − 1)2

γ 4(b2/3 − γ 4)2
(
ω2 + (γ 3+1)5/2(b2/3γ 2−1)3/2

γ 3(γ 3−1)3/2

) . (20)

To find the point of the V34 crossing, we take the
derivative of r by γ and set it equal to zero. The
numerical solution for this equation determines the value of γ

corresponding to the minimum of r(γ ) for given b and ω, which
corresponds to the crossing. Substituting it to the expression
for the energy in (19), we obtain εc(b, ω)—the dependence of
CL on b for a given ω.

In figures 11 and 12 we present several double-logarithmic
plots, similar to those in the previous sections, for selected
values of ω.

From the graphs in figure 11 it is seen that the effect
of the magnetic field on CL is similar to the effect of the
plasma screening—it decreases CL. The ‘cutoff’ values of b,
below which there is no CL for a given ω, are also observed
as ω becomes large. From figure 12 it is seen, for example,
that for ω = 2.8, CL at b = 2 vanishes, so the values of b
corresponding to CL start at b > 2. At ω = 4.3, the ‘cutoff’
value is b = 3.

6. Conclusions

We studied effects of the plasma screening, electric and
magnetic fields on the value of continuum lowering (CL) in
the ionization channel by employing the dicentre model of
CL, to which the calculations of CL advanced from one-centre
(ion sphere) models over recent years. By analysing physics of
the corresponding one-electron Rydberg quasimolecules, we
found that the screening and the magnetic field decrease the
value of CL, inhibiting the ionization, while the electric field
increases the value of CL, promoting the ionization. These
results should be important for inertial fusion, x-ray lasers,
powerful Z-pinches, astrophysics and other applications of
high-density plasmas.

We investigated also the effect of the screening on
crossings of energy terms and on the stability of the nuclear
motion of the corresponding Rydberg quasimolecules. We
demonstrated that the screening stabilizes the nuclear motion
in the case of Z = 1 and destabilizes it in the case of Z > 1.

It should be noted that circular states of atomic and
molecular systems, used in the present work, is an important
subject in its own right. They have been extensively studied
both theoretically and experimentally for several reasons
(see, e.g., [20–36] and references therein): (a) they have
long radiative lifetimes and highly anisotropic collision
cross sections, thereby enabling experiments on inhibited
spontaneous emission and cold Rydberg gases, (b) these
classical states correspond to quantal coherent states, objects
of fundamental importance, (c) a classical description of these
states is the primary term in the quantal method based on the
1/n-expansion, and (d) they can be used in developing atom
chips. In the present paper we used circular states just to get
the message across and to stimulate further studies of CL in
the ionization channel.

Appendix A. Crossings of the energy terms

Several properties of the classical energy terms have been
studied. Using a small-λ approximation by choosing (13) as
the p(w) solution for the parametric energy terms (essentially,
a zero-λ approximation), we can substitute (13) into (9), which
will give it the form below:

r =
(1 − 2w)3/2

√
b2/3 − (

w
1−w

)2/3

w3
(

b2/3 − (
1−w
w

)4/3
)2 . (A.1)

For a given b, the terms 3 and 4 are produced by varying
w between 0 and w1. The V34 crossing occurs at the value
of w where r(w) has a minimum, as explained in [21, 22].

6
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Therefore, setting the derivative dr/dw to zero, we obtain the
equation whose solution for w in the range 0 < w < w1 gives
us the point on the parametric axis which produces the V34
crossing,

9w4/3(1 − w)4/3(w4/3 + b4/3(1 − w)4/3)

= b2/3(1 − 4w + 22w2 − 36w3 + 18w4). (A.2)

This equation has no dependence on λ and is therefore
equivalent to the Coulomb-potential case (λ = 0). It turns
out that the form of the parametric dependence ε1(r) in this
case can be significantly simplified by introducing a new
parameter

γ =
(

1

w
− 1

)1/3

. (A.3)

In this case, w = 0 will correspond to γ = +∞ and w = 1
will correspond to γ = 0, thus γ > 0 in the allowed regions.
The points w1 = 1/(1 + b1/2) and w3 = b/(1 + b) defining the
allowed regions 0 < w < w1, w3 < w <1 (here we assume
b > 1) will correspond to γ 1 = b1/6 and γ 3 = 1/b1/3 (notice that
0 < w < w1 corresponds to +∞ > γ > γ 1 and w3 < w < 1
corresponds to γ 3 > γ > 0). The energy terms ε1(r) for the
Coulomb-potential case will take the following parametric
form:

ε1(γ , b) = (b2/3 − γ 4)2(γ (γ 3 − 2) + b2/3(2γ 3 − 1))

2(γ 3 − 1)2(γ 6 − 1)
,

(A.4)

r(γ , b) =
√

b2/3γ 2 − 1(γ 6 − 1)3/2

γ (b2/3 − γ 4)2
. (A.5)

The parametric plot of (A.4) and (A.5) with the parameter
γ varied from 0 to 1/b1/3 and from b1/6 to +∞ for b = 3 will
yield the same graph as in figure 3 in [22].

The crossing of the top two terms corresponds to the point
where r(γ , b) has a minimum or ε1(γ , b) has a maximum
for a given b. Thus, taking the derivative of either function
by γ and setting it equal to zero will yield a solution for
the γ on the interval γ > 1 corresponding to the crossing.
The equation for γ obtained from differentiating r(γ ) is a
sixth-power polynomial and cannot be solved analytically;
however, the equation for γ obtained from differentiating ε1(γ )
can be solved analytically for γ . Below is the critical value
γ 0 corresponding to the crossing

γ0 =
√

b1/3 + (b − 1)1/3

b1/6
((

√
b + 1)1/3 + (

√
b − 1)1/3).

(A.6)

Therefore, an analytical solution exists for (A.2). Going
back to the w-parametrization, we obtain the analytical
solution of (A.2):

wV34

= 1

1 +
(

b1/3 + (b−1)1/3

b1/6 ((
√

b + 1)1/3 + (
√

b − 1)1/3)
)3/2 .

(A.7)

Figure A.1. Semi-analytical (solid curve) and numerical (dashed
curve) plot of rV34(λ) for b = 3.

Figure A.2. Numerical plot of −εV34(λ) for b = 3.

Substituting it into (9) and using the numerical solution for
p of (10), we obtain the semi-analytical dependence rV34(λ) for
a given b. Since it was obtained using a zero-λ approximation
for the point of the V34 crossing, we also graphed this
dependence numerically point by point. Figure A.1 shows
the semi-analytical (solid curve) and figure A.2 shows the
numerical (dashed curve) plot for b = 3.

Figure A.1 shows that in relation to terms 3 and 4, this
approximation works well even for moderate values of λ.

The energy of the V34 crossing can be obtained semi-
analytically by substituting the numerical solution for p of
(10) into (8), and by further substituting (A.7) into the resulting
formula. It could be seen that as λ grows, the energy of the
crossing grows and at a relatively large λ becomes positive.
A numerical graph can also be made in a fashion similar
to figure A.1. A visual comparison shows a good similarity
between the two. Figure A.2 shows a numerical graph for
b = 3.

As we see, the energy of the V34 crossing becomes
positive after λ = 2.96, has a maximum, and later
asymptotically approaches zero. For b = 4/3, the V34 crossing
reaches zero energy at λ = 2.13.

The shape of terms 3 and 4 is also affected by the
screening. Term 3, whose energy increases as r increases,
becomes nearly horizontal at energy −0.5 at a certain value
of λ; at further λ, its energy decreases with r. For b = 3, this
value of λ is about 1.1; for b = 4/3, it is about 0.7. The plots
of these are shown in figures A.3 and A.4.

For V12 crossing, the small-λ approximation is not
applicable since this crossing is not observed at λ = 0.

7
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Figure A.3. Classical energy terms for b = 3 at λ = 1.1; term 3 is
nearly constant at the energy −ε1 = −0.5.

Figure A.4. The same as figure A.3, but for b = 4/3 at λ = 0.7.

Therefore, only numerical methods were used. A situation of
particular interest is the behaviour of term 1 at very small
r, because as r → 0 it corresponds to the energy of the
hydrogenic ion, plasma screening of which was studied in
[23] (in our case, the nuclear charge of the hydrogenic ion is
Z + Z′). The point with the smallest r is the V12 crossing.
A comparison was made of the dependence of the electronic
energy on the screening parameter λ between the results from
[23] and the limiting case r → 0 in our situation. Since in
[23] the calculation was performed for a single Coulomb
centre Z, we had to re-scale the quantities to make a valid
comparison. The electronic energies are related as ε1

(TCC) =
(1 + b)2ε1

(OCC), where OCC stands for ‘one-Coulomb centre’.
Since the scaling for the screening parameter in the OCC
case did not include R (the internuclear distance), the scaling
factor between the screening parameter includes r: λ(TCC) =
r(1 + b)λ(OCC). Taking this into account, we can plot the energy
dependence on λ for the limiting case r → 0.

Figure A.6 shows the dependence obtained in [23] for
OCC:

Figure A.5. Plot of the energy of the electron versus the scaled
screening factor for b = 3 in the limit r → 0.

Figure A.6. Plot of the energy of the electron in a one-Coulomb
centre (OCC) system versus the scaled screening factor.

Appendix B. Effects of the plasma screening on the
stability of the nuclear motion of Rydberg
quasimolecules

Another aspect of this problem worth studying is the
internuclear potential. Previously its properties were studied
for the same system with λ = 0 and a magnetic field parallel
to the internuclear axis [24]. Particularly, the magnetic field
created a deep minimum in the internuclear potential, which
stabilized the nuclear motion and transformed a Rydberg
quasi-molecule into a real molecule. Here we shall investigate
the effect of the screening on the internuclear potential. Its
form in atomic units is

Uint = ZZ′

R
+ E, (B.1)

where E is the electronic energy. Using the scaled quantities
from (4), we have the scaled internuclear potential

uint = bZ

r
− ε1, (B.2)

where Uint = (Z/L)2uint. By plotting its dependence on r, we
found out that in cases of Z > 1 the screening tends to flatten
the minimum, producing the effect opposite to the one of the
magnetic field. Compare the plots of uint(r) in the case of
Z = 2, b = 2 for λ = 0 and λ = 0.3.

The screening increases the potential of the point of
intersection of the two branches; the upper branch, which has
a very shallow minimum at λ = 0, loses it as λ increases.
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Figure B.1. The plot of the scaled internuclear potential versus the
scaled internuclear distance for Z = 2, Z′ = 4, λ = 0.

Figure B.2. The plot of the scaled internuclear potential versus the
scaled internuclear distance for Z = 2, Z′ = 4, λ = 0.3.

Figure B.3. The plot of the scaled internuclear potential versus the
scaled internuclear distance for Z = 1, Z′ = 2, λ = 0.

Figure B.4. The plot of the scaled internuclear potential versus the
scaled internuclear distance for Z = 1, Z′ = 2, λ = 0.3.

A completely different behaviour was observed for Z = 1.
A small λ creates a deep minimum in the upper branch of the
potential. For comparison, we present the plots of the potential
in the case of Z = 1, b = 2 for λ = 0 and λ = 0.3.

Figures B.1–B.4 demonstrate that plasma screening
stabilizes the nuclear motion for the case of Z = 1, but
destabilizes it for Z > 1.
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