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Electric field induced crossings of energy terms of
a Rydberg quasi molecule enhancing charge
exchange and ionization

N. Kryukov and E. Oks

Abstract: Charge exchange is one of the most important atomic processes in plasmas. Charge exchange and crossings of
corresponding energy levels that enhance charge exchange are strongly connected with problems of energy losses and of di-
agnostics in high temperature plasmas. Charge exchange was also proposed as an effective mechanism for population inver-
sion in the soft X-ray and vacuum ultraviolet ranges. One of the most fundamental theoretical domains for studying charge
exchange is the problem of electron terms in the field of two stationary Coulomb centers (TCC) of charges Z and Z’ sepa-
rated by a distance R. It presents an intriguing atomic physics: the terms can have crossings and quasi crossings. These in-
trinsic features of the TCC problem also manifest in different areas of physics, such as plasma spectroscopy: a quasi
crossing of the TCC terms, by enhancing charge exchange, can result in an unusual structure (a dip) in the spectral line pro-
file emitted by a Z-ion from a plasma consisting of both Z- and Z'-ions, as was shown theoretically and experimentally. Be-
fore the year 2000, the paradigm was that the preceding sophisticated features of the TCC problem and its flourishing
applications were inherently quantum phenomena. In 2000, a purely classical description of the crossings of energy terms
was presented. In the present paper we study the effect of an electric field (along the internuclear axis) on circular Rydberg
states of the TCC system. We provide analytical results for strong fields, as well as numerical results for moderate fields.
We show that the electric field has several effects. First, it leads to the appearance of an extra energy term: the fourth classi-
cal energy term — in addition to the three classical energy terms at zero field. Second, but more importantly, the electric
field creates additional crossings of these energy terms. We show that some of these crossings significantly enhance charge
exchange, while other crossings enhance the ionization of the Rydberg quasi molecule.

PACS Nos: 32.60.+i, 32.80.Ee, 34.70.4¢, 33.80.Be, 31.15.—p

Résumé : L’échange de charge est le plus important mécanisme atomique dans les plasmas. L’échange de charge et le croi-
sement des niveaux d’énergie correspondants qui augmente 1’échange de charge sont fortement connectés aux problemes de
perte d’énergie et de diagnostique dans les plasmas de haute température. L’échange de charge a aussi été proposé comme
un mécanisme efficace pour I'inversion de population dans les domaines VUV et rayon-X mou. Le probleme des termes de
I’électron dans le champ de deux centres coulombiens stationnaires (TCC) de charges Z et Z' séparés par une distance R, est
central dans 1’étude de 1’échange de charge. C’est un probléme intriguant en physique atomique : les termes peuvent avoir
des croisements et des quasi croisements. Ces caractéristiques intrinséques se manifestent également dans d’autres domaines
de la physique, comme la spectroscopie du plasma : un quasi croisement des termes TCC, par augmentation de 1’échange
de charge, peut donner une structure inhabituelle (un creux) dans le profile de raies spectrales émis par un ion Z dans un
plasma contenant des ions Z et Z', comme il a été démontré expérimentalement et théoriquement. Avant I’an 2000, le para-
digme était que les caractéristiques sophistiquées du probleme TCC et ses applications croissantes étaient des phénomenes
essentiellement quantiques. En 2000, est apparue une description purement classique des termes de croisement. Ici, nous
étudions I'effet du champ électrique (le long de I’axe internucléaire) sur les états circulaires de Rydberg du systeme TCC.
Nous présentons des résultats analytiques en champ fort, ainsi que des résultats numériques pour champs intermédiaires.
Nous montrons que le champ électrique a différents effets. En premier, il meéne a I’apparition d’un terme d’énergie addition-
nel : le quatrieme terme d’énergie — en addition aux trois termes classiques d’énergie en champ nul. Deuxiémement, mais
plus important, le champ électrique génere des croisements additionnels de ces termes d’énergie. Nous montrons que cer-
tains de ces croisements augmente de facon significative 1’échange de charge, alors que d’autres croisements augmentent
I’ionisation de la quasi molécule de Rydberg.
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1. Introduction

Charge exchange is one of the most important atomic
processes in plasmas. Charge exchange and crossings of cor-
responding energy levels that enhance charge exchange are
strongly connected with problems of energy loss and of diag-
nostics in high temperature plasmas (see, e.g., refs. 1, 2, and
references therein). Charge exchange was proposed as an ef-
fective mechanism for population inversion in the soft X-ray
and vacuum ultraviolet ranges [3-6]. One of the most funda-
mental theoretical domains for studying charge exchange is
the problem of electron terms in the field of two stationary
Coulomb centers (TCC) of charges Z and Z’ separated by a
distance R. It presents an intriguing atomic physics: the terms
can have crossings and quasi crossings.

The crossings are due to the fact that the well-known
Neumann—-Wigner general theorem on the impossibility of
crossing of terms of the same symmetry [7] is not valid for
the TCC problem of Z' # Z [8]. Physically it is here a conse-
quence of the fact that the TCC problem allows a separation
of variables in the elliptic coordinates [8]. As for the quasi
crossings, they occur when two wells, corresponding to sepa-
rated Z- and Z’-centers, have states ¥ and ¥, characterized
by the same energies E = E’, by the same magnetic quantum
numbers m = m’, and by the same radial elliptical quantum
numbers k = k' [9-11]. In this situation, the electron has a
much larger probability of tunneling from one well to the
other (i.e., of charge exchange) as compared to the absence
of such degeneracy.

These intrinsic features of the TCC problem also manifest
in a different area of physics, such as plasma spectroscopy as
explained herein. A quasi crossing of the TCC terms, by en-
hancing charge exchange, can result in unusual structures
(dips) in the spectral line profile emitted by a Z-ion from a
plasma consisting of both Z- and Z'-ions, as was shown theo-
retically and experimentally [12—17].

Before the year 2000, the paradigm was that the preceding
sophisticated features of the TCC problem and its flourishing
applications were inherently quantum phenomena. But then
in 2000 one of the authors published papers [18, 19] present-
ing a purely classical description of both the crossings of
energy levels in the TCC problem and the dips in the
corresponding spectral line profiles caused by the crossing
(via enhanced charge exchange). These classical results were
obtained analytically based on first principles without using
any model assumptions. Later, applications of these results
included a magnetic stabilization of Rydberg quasi molecules
[20] and a problem of continuum lowering in plasmas [21].

In refs. 18, 20, and 21 the study was focused on circular
Rydberg states (CRS) of the TCC system (the analysis in
ref. 19 went beyond CRS). CRS of atomic and molecular
systems with only one electron correspond to Iml = (n —
1) > 1, where n and m are the principal and magnetic elec-
tronic quantum numbers, respectively. They have been exten-
sively studied [22-25] both theoretically and experimentally
for several reasons: (i) CRS have long radiative lifetimes and
highly anisotropic collision cross sections, thereby enabling
experiments on inhibited spontaneous emission and cold
Rydberg gases [26, 27], (ii) classical CRS correspond to
quantal coherent states, objects of fundamental importance,
and (iii) a classical description of CRS is the primary term
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in the quantal method based on the 1/n-expansion (see, e.g.,
ref. 28 and references therein).

While the authors of ref. 20 studied analytically the effect
of a magnetic field (along the internuclear axis) on CRS of
the TCC system, in the present paper we study the effect of
an electric field (along the internuclear axis) on CRS of the
TCC system. We provide analytical results for strong fields,
as well as numerical results for moderate fields. We show
that the electric field leads to the following consequences.

First, it leads to the appearance of an extra energy term:
the fourth classical energy term, in addition to the three clas-
sical energy terms at zero field. Second, but more impor-
tantly, the electric field creates additional crossings of these
energy terms. We show that some of these crossings enhance
charge exchange while other crossings enhance the ionization
of the Rydberg quasi molecule.

The enhancement of charge exchange by the electric field
has a practical application to the feasibility of controlled fu-
sion in tokamaks. More details on this are given in the Con-
clusion.

2. Calculations of the classical Stark effect
for a Rydberg quasi molecule in a circular
state

We consider a TCC system, where the charge Z is at the
origin and the O-z axis is directed to the charge Z’, which is
at z = R (here and later the atomic units i = e = m, = 1 are
used). A uniform electric field F is applied along the inter-
nuclear axis in the negative direction of the O—z axis. We
study CRS where the electron moves around a circle in the
plane perpendicular to the internuclear axis, the circle being
centered at this axis.

Two quantities, the energy E and the projection L of the
angular momentum on the internuclear axis are conserved in
this configuration. We use cylindrical coordinates to write the
equations for both.

L[ (dp\? | L(de\®  [(d\}| z Z
E‘E[(E) ﬂ’(a) +<a> e fe )
_ 4o

L_p_dt (2)

where p is the distance of the electron from the internuclear
axis, ¢ is its azimuthal angle, z is the projection of the radius
vector of the electron on the internuclear axis, r and r' are
the distances of the electron from the particle to Z and Z',
respectively.

The circular motion implies that dp/dt = 0; as the motion
occurs in the plane perpendicular to the z-axis, dz/dr = O.
Further, expressing r and r’ through p and z, and taking de/d¢
from (2), we have:

E L’ Z VA e )
=55 - — Iz
2,02 (p2 + Z2) 1/2 I:pz + (R _ 1)2] 172

With the scaled quantities
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We can seek equilibrium points by finding partial deriva-
tives of & by the scaled coordinates w and v and setting them
equal to zero. This will give the following two equations:

b(l —w) _ w 6
P e ) ©
m? 1 b
W (w2 + v2)3/2 + [(1—w) + 2] 372 (7)

From the definitions of the scaled quantities (4), m* = 1/r
and E = —(Z/R)s. Because r = ZR/L?, E = —(Z/L)*(¢/r), where
r = 1/m? can be obtained by solving (7) for m. Substituting m
into the energy equation, we get the three master equations
for this configuration.

€1 —[72{ ! + b }
(W2+p)3/2 [(1 —W)2+p]3/2

w2 w2
X{ (pr) )+W2+ﬂ} )

(w2 +p)™ (1= w) +p]
(] b B
(P {(w2+p)3/2+ [(1w)2+p]3/2}> 9)
it b(l —w) _ w (10)

[(17w)2+p]3/2 (Werp)z/z

where E = —(Z/L)%¢; and p = v2. Thus, ¢, is the “true” scaled
energy, whose equation for E does not include R. The scaled
energy &, and internuclear distance r in (8) and (9) now ex-
plicitly depend only on the coordinates w and p (besides the
constants b and f). Therefore, if we solve (10) for p and sub-
stitute it into (8) and (9), we will have the parametric solution
&1(r) with the parameter w.

Our focus is at crossings of energy terms of the same sym-
metry. In the quantum TCC problem, “terms of the same
symmetry” means terms of the same magnetic quantum num-
ber m [8-11]. Therefore, in our classical TCC problem, we
fixed the angular momentum projection L and study the be-
havior of the classical energy at L = constant > 0 (the results
for L and —L are physically the same).

Equation (10) does not allow an exact analytical solution
for p. Therefore, we will use an approximate analytical
method.

Figure 1 shows a contour plot of (10) for a relatively weak
field f = 0.3 at b = 3, with w on the horizontal axis and p on
the vertical. The plot has two branches. The left branch spans

649

Fig. 1. Contour plot of (10) for a relatively weak field f = FR*Z =
03atb=2/Z=23.

= T T T T m

from w = 0 to w = wy. The right one actually has a small
two-valued region between some w = w3 and 1 (w3 < 1). In-
deed, at w = 1, there are two values of p: p =0 and f 23 — 1.
Thus, the two-valued region exists only for f < 1.

The right branch touches the abscissa at w = 1 and at
some w = w,. Analytical expressions for w; and w, are given
in Appendix A. The quantity w5 is a solution of the equation

f2/5 (2W’; _ 1)3/5 — W%/S _ b2/5(1 _ W3)2/5 (11)

The method, by which w; was found from (11), is pre-
sented in Appendix B.

Figure 2 shows a contour plot of (10) for a relatively
strong field f = 20 at b = 3. It is seen that there is no two-
valued region.

Thus, Figs. 1 and 2 demonstrated the presence of the two
branches and whether or not one of the branches has a two-
valued region with respect to the scaled z-coordinate w = z/R.
The contour plots facilitate obtaining further analytical results
presented later.

From now on we consider the situation where the radius of
the electronic orbit is relatively small, meaning that p <« 1.
Physically this corresponds to strong fields f > fi, ~ 10.

Solving (10) in the small-p approximation, we obtain

B ) N 23 i N
p= W{f+m -w (12)

for the left branch (0 < w < wy) and

b l 2/3
p= [(‘W)] 1w (13)

(1w?) = f

for the right branch (1 < w < w»). Substituting these results
into (8) and (9), we get approximate solutions for energy
terms —e(r) in both regions in a parametric form, w being
the parameter. Now we plot classical energy terms —e(r) by
varying the parameter w over both regions, using the appro-
priate formula for each one.
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Fig. 2. Contour plot of (10) for a relatively strong field f = FR*Z =

20.
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Fig. 3. Classical energy terms at b = 3 for f = 100.
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Figures 3, 4, and 5 show classical energy terms at b = 3
for f = 100, 20, and 5, respectively.

At this point it might be useful to clarify the relation be-
tween the classical energy terms —e&(r) and the energy E.
The former is a scaled quantity related to the energy as speci-
fied earlier in the first line after (10): E = — (Z/L)s;. The
projection L of the angular momentum on the internuclear
axis is a continuous variable. The energy E depends on both
&1 and L. Therefore, while the scaled quantity ¢, takes a dis-
crete set of values, the energy E takes a continuous set of
values (as it should be in classical physics).

We also solved the same problem numerically. By compar-
ison we found that the approximate analytical solution is ac-
curate for fields f = 5 and above.

Figures 6 and 7 show the numerically obtained classical
energy terms at b = 3 for f = 2 and 0.1, respectively. For
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Fig. 4. Classical energy terms at b = 3 for f = 20.
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Fig. 5. Classical energy terms at b = 3 for f = 5.
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comparison, Fig. 8 shows the classical energy terms at b = 3
in the absence of the electric field (it had been previously
presented by one of the authors in refs. 18 and 19).

The electric field causes several important new features
compared to the zero-field case. While at f = O there are
three classical energy terms, the electric field brings up the
fourth classical energy term. Indeed, let us take as an exam-
ple the case of f =5 at b = 3 presented in Fig. 5. There are
four energy terms that we label as follows:

1. the lowest term;

2. the next term up (which has a V-type crossing with
term 1);

3. the next term up; and

4. the highest term (which has a V-type crossing with
term 3).

We will use this labeling also while discussing all other
plots (except the plot in Fig. 8 for f = 0): terms 1 and 2 will
be those having a V-type crossing at lower energy, terms 3
and 4 will be those having a V-type crossing at higher en-

ergy,
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Fig. 6. Classical energy terms at b = 3 for f = 2.

Fig. 7. Classical energy terms at b = 3 for f = 0.1.
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Fig. 8. Classical energy terms at b = 3 in the absence of the electric
field.

10t

At f = 0 term 2 is absent, but it appears at any nonzero
value of f no matter how small. Actually, as f approaches
zero, this term behaves like —f/r, which is why it disappears
at f=0.
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The existence of this additional term can be explained
physically as follows. When f = 0, equilibrium of the orbital
plane to the right of Z" (i. e., for w > 1) does not exist, so
that the values of w; and ws reduce to the ones presented in
refs. 18 and 19, and the right branch of p(w) asymptotically
goes to infinity when w goes down to w;. When an infinites-
imal field f appears, the right branch flips over positive infin-
ity and ends up on the abscissa at w, — oo, thus enabling the
whole region w > 1 for equilibrium. As the field grows, w,
decreases. Physically, the force from the electric field at w > 1
balances out the Coulomb attraction of the Z-Z' system on
the left — this situation is not possible for f = 0. This term
is obtained by varying the parameter w from 1 to w,.

We emphasize that the preceding example presented for
Z'lZ = 3 represents a typical situation. In fact, for any pair
of Z and Z' # Z, at the presence of the electric field, there
are four classical energy terms of the same symmetry for
CRS.

Another important new feature caused by the electric field
is X-type crossings of the classical energy terms. These kinds
of crossings and their physical consequences are discussed in
the next section.

3. X-type crossings of classical energy terms
and their physical consequences

Figure 9 shows a magnified version of the energy terms 2,
3, and 4 at b = 3 for f = 2. Figure 10 shows a further magni-
fied version of the energy terms 2 and 4 at b = 3 for f = 2.
Compared with Fig. 6 for the same b and f, in Figs. 9 and 10
we decreased the exhibited energy range, but increased the
exhibited range of the internuclear distances r.

It is seen that term 2 has the X-type crossing with term 3
at r = 7.8 and the X-type crossing with term 4 at » = 32. The
situation where there are two X-type crossings exists in a lim-
ited range of the electric fields. For example, for b = 3:

o two X-type crossings exist at 1.31 < < 2.4;
e there are no X-type crossings at f < 1.31; and
e there is one X-type crossing at f > 2.4 (the crossing of

terms 2 and 3).

To reveal physical consequences of the X-type crossings,
let us first discuss the origin of all four classical energy terms
for arbitrary Z'/Z # 1. At r - oo, term 3 corresponds to the
energy of a hydrogen-like ion of the nuclear charge Z;, =
min(Z', Z), slightly perturbed by the charge Z,,, = max(Z', Z),
as shown in refs. 18 and 19.

At r — o0, term 4 corresponds to a near-zero energy state
(where the electron is almost free), as shown in refs. 18 and
19. If the ratio Z'/Z is of the order of (but not equal to) unity,
this term at » — oo can be described only in the terminology
of elliptical coordinates (rather than parabolic or spherical co-
ordinates), meaning that even at » — oo the electron is shared
between the Z- and Z'-centers. However, in the case of Z' > Z,
this term can be asymptotically considered as the Z'-term
[18, 19]. It has the V-type crossing with term 3, which
asymptotically is the Z-term (Z,;, = Z for Z' > Z). Like-
wise, in the case of Z' <« Z, term 4 can be asymptotically
considered the Z-term [18, 19]. It has a V-type crossing
with term 3, which asymptotically is the Z'-term (Z;, = Z’
for 7' < 7).
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Fig. 9. Magnified plot of the classical energy terms 2, 3, and 4 at
b =73 forf=2.
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Fig. 10. Further magnified plot of the classical energy terms 2 and 4
at b =3 for f = 2.
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At r — oo, term 1 corresponds to the energy of a hydro-
gen-like ion of the nuclear charge Z,,,, slightly perturbed by
the charge Z,;, [18, 19]. As for term 2, at r — oo it has prop-
erties similar to term 4, but with the interchange of Z,,x and
Zmin- In particular, in the case of Z' > Z, this term can be
asymptotically considered as the Z-term, having the V-type
crossing with term 1, which asymptotically is the Z’'-term
(Zmax = Z' for Z' > Z). In the case of Z' <« Z, term 2 can be
asymptotically considered the Z’-term, having the V-type
crossing with term 1, which asymptotically is the Z-term
(Zmax = Z for Z' < Z).

Thus, when Z and Z’ differ significantly from each other,
V-type crossings occur between two classical energy terms
that can be asymptotically labeled as Z- and Z'-terms. This
situation classically depicts charge exchange, as explained in
refs. 18 and 19. Indeed, say, initially at » — oo, the electron
was a part of the hydrogen-like ion of the nuclear charge
Zmin- As the charges Z and Z' come relatively close to each
other, the two terms undergo a V-type crossing and the elec-
tron is shared between the Z- and Z'-centers. Finally, as the
charges Z and Z' go away from each other, the electron ends
up as a part of the hydrogen-like ion of the nuclear charge
Zmax-

So, the first distinction caused by the electric field is an
additional, second V-type crossing leading to charge ex-
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Fig. 11. Dependence of the internuclear distance, where terms 3 and
4 cross, on the electric field at b = 3.
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Fig. 12. Dependence of the internuclear distance, where terms 1 and
2 cross, on the electric field at b = 3.
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change — compared to the zero-field case where there was
only one such crossing. However, the second V-type crossing
(the crossing of terms 1 and 2) occurs at the internuclear dis-
tance ry, < ryj, where ry; is the internuclear distance of the
first V-type crossing (the crossing of terms 3 and 4). There-
fore the cross section of the charge exchange corresponding
to the second V-type crossing is much smaller than the corre-
sponding cross section for the first V-type crossing.

Figure 11 shows ry; versus f and Fig. 12 shows ry, versus
f. It is seen that both quantities (and thus the cross sections of
charge exchange) increase with the growth of the electric
field.

Now let us discuss the X-type crossing from the same
point of view. When Z and Z’ differ significantly from each
other, the X-type crossing of terms 2 and 4 is the crossing of
terms that can be asymptotically labeled as Z- and Z’-terms.
Thus, this situation again classically depicts charge ex-
change. The most important is that this crossing occurs at
the internuclear distance ryx; > ry; > ry,. Therefore, the
cross section of charge exchange due to this X-type crossing
is much greater than the corresponding cross sections for the
V-type crossings. This is the most fundamental physical con-
sequence caused by the electric field: a significant enhance-
ment of charge exchange.

When Z and Z' differ significantly from each other, the
X-type crossing of terms 2 and 3 is the crossing of terms
having the same asymptotic labeling: either both of them
are Z-terms or both of them are Z'-terms. Therefore, this
second X-type crossing (at » = ryx») does not correspond to
charge exchange, rather it represents an additional ionization
channel. Indeed, say, initially at r — oo, the electron re-
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sided on term 3 of the hydrogen-like ion of the nuclear
charge Z. As the distance between the charges Z and Z' de-
creases to r = ryp, the electron can switch to term 2, which
asymptotically corresponds to a near-zero energy state (of
the same hydrogen-like ion of the nuclear charge Z) where
the electron would be almost free. So, as the charges Z and
Z' go away from each other, the system undergoes ioniza-
tion. Thus, another physical consequence caused by the
electric field is the appearance of the additional ionization
channel. This should have been expected as the electric
field promotes the ionization of atomic and molecular sys-
tems.

4. Conclusion

We studied the effect of an electric field (along the inter-
nuclear axis) on CRS of the TCC system. We provided ana-
lytical results for strong fields, as well as numerical results
for moderate fields. We showed that the electric field had
the following effects.

The first effect is the appearance of an extra energy term —
the fourth classical energy term — in addition to the three
classical energy terms at zero field. This term exhibits a V-
type crossing with the lowest energy term. The two highest
energy terms continue having a V-type crossing, like at the
zero field. In the situation where the charges Z’ differ signifi-
cantly from each other, both V-type crossings correspond to
charge exchange.

The second effect is the appearance of a new type of cross-
ing: X-type crossings. One of the X-type crossings (existing
in a limited range of the electric field strength) corresponds
to charge exchange at a much larger internuclear distance
than the V-type crossings.

Therefore the cross section of charge exchange due to this
X-type crossing is much greater than the cross section of
charge exchange due to V-type crossings. Thus, the electric
field can significantly enhance charge exchange. We believe
that this is the most important result of the present paper.

The other X-type crossing does not correspond to charge
exchange. Instead, it represents an additional ionization
channel.

For completeness we add the following note concerning
the corresponding quantum problem. The quantal energy
terms are characterized by the elliptic quantum numbers &, s,
m. Charge exchange can occur in the situation where two
terms of the same symmetry (m = m’) differ by their “angu-
lar” elliptic quantum numbers s = s° + 1, while having the
same ‘“radial” quantum numbers k = k’. This situation corre-
sponds to a quasi crossing (i.e., avoided crossing) of the two
quantal terms.

One of the most important practical applications of our re-
sults is the following. Charge exchange in high temperature
plasmas is strongly connected with problems of energy losses
and of plasma diagnostics. Specifically, charge exchange be-
tween multicharged impurity ions and hydrogen (or deute-
rium, or trittum) atoms in tokamaks provides a nonlinear
coupling of kinetics of impurities and neutrals, thus affecting
the feasibility of controlled fusion (as multicharged ions pro-
duce considerably more radiative losses per unit particle than
singly charged ions of the nuclear fuel components). A quasi-
static electric field caused by plasma ions (the ion microfield)
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can strongly enhance charge exchange, as shown earlier, and
thus affect the feasibility of controlled fusion significantly
more than if the ion microfield was disregarded.
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where

a) = {/54bf+ (b+f —1)3 +63/3bf /D> +302(f — 1) + (f — 1)? + 3b[1 +£(f +7)]

The expression for w; is
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a = {/(f— 1)3 +3b2(f— 1) — b3 = 3b[1 +£(f + 16)] + 6:/3bf /(b + 1)3 = 3f[L + b(b —T)] +3f2(b + 1) — f3

Appendix B. Finding the lower limit w; of the two-valued region on the graph of p(w) in (10)
Defining a function

b(l —w) B w
[(1—w)?+p] " (w2 +p)

we can rewrite (10) as F(p, w) = 0. From the graph it is seen that at w;, dw/dp = 0. Because F(p, w) = 0, dF/dp = 0 as well.
On the other hand, F(w, p) = F(w(p), p) = 0 and

dF _OFdw  OF _

Flp.w)=f+

32 (B1)

A T, B2
dp  owdp + Op (B2)
from which we get

dw OF/0p (B3)
dp  OFlow

Setting the right-hand side of (B1) and (B3) to zero, we obtain the system of two equations, solving which for w will give us
the point on the contour plot of F(p, w) = 0 where the derivative dw/dp vanishes (i.e., the desired point). Excluding p from the
system, we reduce the equation to

f2/5(2W3 _ 1)3/5 — W%/S _ b2/5(1 _ W3)2/5 (B4)

where w was renamed to ws for clarity. This is (11) of the main text.
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