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A so-called two centers problem (TCP) has the following two mathematically equivalent, but physically
different embodiments. The first one is the motion of an electron in the field of two stationary Coulomb centers
of charges Z and Z′ separated by a distance R, which is one of the most fundamental problems in quantum
mechanics. The second one is the motion of a planet in the gravitational field of two stationary stars of generally
different masses, which is one of the most fundamental problems in celestial mechanics. At least, two groups
of authors claimed that for the TCP they derived a supergeneralized Runge-Lenz vector, whose projection
on the internuclear (or interstellar) axis is conserved. In the present paper, first, we show that their claims
are incorrect: the projection of their supergeneralized Runge-Lenz vector is not conserved. Second, we derive
a correct supergeneralized Runge-Lenz vector whose projection on the internuclear or interstellar axis does
conserve. Third, since in the literature there are several expressions for the separation constant for the TCP—the
expressions not having the form of a projection of any vector on the internuclear or interstellar axis—we provide
relations between those expressions and our result.
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I. INTRODUCTION

A so-called two centers problem (TCP) has the follow-
ing two mathematically equivalent, but physically different
embodiments. The first one is the motion of an electron
in the field of two stationary Coulomb centers of charges
Z and Z′ separated by a distance R, which is one of the
most fundamental problems in quantum mechanics (see, e.g.,
Refs. [1,2]). The second one is the motion of a planet in the
gravitational field of two stationary stars of generally different
masses, which is one of the most fundamental problems in
celestial mechanics (see, e.g., Refs. [3,4]). The geometrical
symmetry of the TCP dictates the conservation of the energy
and of the projection of the angular momentum on the
internuclear (or interstellar) axis. It is also well known that
the TCP possesses a higher than geometrical symmetry and
that there should be an additional integral of the motion. The
existence of the additional integral of the motion is intimately
connected with the fact that the TCP allows the separation of
variables in the elliptical coordinates—the fact shown as early
as in 1760 by Euler [5] (see also Ref. [6,7]).

In the limit of large R, the problem of two Coulomb centers
reduces to the problem of a hydrogenic ion of the nuclear
charge Z in the uniform electric field F = Z′/R2, which
is another fundamental problem in quantum mechanics (the
corresponding celestial problem reduces to the problem of
the one-center Kepler system in the uniform gravitational
field). This simpler quantal problem also possesses higher
than geometrical symmetry (connected with the fact that this
problem allows the separation of variables in the parabolic
coordinates). The corresponding integral of the motion is
known as a projection of a generalized Runge-Lenz vector on
the internuclear axis. The generalized Runge-Lenz vector A
for this simpler problem, introduced by Redmond in 1964 [8],
and its projection Az on the axis 0z‖F can be represented in
the forms, respectively,

A = A0 + (r × F) × r/2, Az = A0z − (x2 + y2)F/2 (1)

(atomic units are used throughout the paper). Here A0 is
the well-known Runge-Lenz vector for one isolated Coulomb
center: 1

A0 = p × L − Zr/r. (2)

We note that the corresponding expressions in Redmond’s
paper [8] differed from Eqs. (1) and (2) by factor 1/Z.

After Redmond introduced the generalized Runge-Lenz
vector for the asymptotic case of the TCP, the challenge was
to find out whether a supergeneralization of the Runge-Lenz
vector is possible for the general (nonasymptotic) TCP. At least
two groups of authors claimed that they accomplished this task.
Namely, Krivchenkov and Liberman in 1968 [13] and Gurarie
in 1992 [14] presented expressions for a supergeneralized
Runge-Lenz vector and claimed that its projection on the
internuclear (or interstellar) axis is conserved.

In the present paper, first, we show that their claims are
incorrect: the projection of their supergeneralized Runge-Lenz
vector is not conserved (despite the fact that in the limit of large
R, their expressions reduce to Redmond’s result). Second,
we derive a correct supergeneralized Runge-Lenz vector
whose projection on the internuclear or interstellar axis does
conserve. Third, since in the literature there are several
expressions for the separation constant for the TCP—the
expressions not having the form of a projection of any vector
on the internuclear or interstellar axis—we provide relations
between those expressions and our result.

1Vector A0 is also called the Laplace-Runge-Lenz vector. It is
interesting to note that none of these three scientists were the first
to introduce this vector. Historically, it was introduced as early as
in 1710 by Hermann [9,10] and Bernoulli [11] and therefore is also
called the Hermann-Bernoulli vector or the Ermanno-Bernoulli vector
(different just by the spelling of the first author’s name, who is the
same person in both cases)—more details on this history can be found
in Ref. [12].
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II. SUPERGENERALIZED RUNGE-LENZ VECTOR

Krivchenkov and Liberman [13] considered the TCP
described by the Hamiltonian (or the Hamilton function)

H = p2/2 − Z1/r1 − Z2/r2 + Z2/R. (3)

The charge Z1 was placed at the origin and Z2 at z = R. They
presented the following expression for a supergeneralized
Runge-Lenz vector:

A(KL) = p × L − Z1r1/r1 + Z2r2/r2 + Z2ez, (4)

where ez is the unit vector in the direction from charge Z1 to
charge Z2. In the limit of large R, it reduces to Redmond’s
result from Eq. (1).

We calculated the Poisson bracket [A(KL),H ] of the projec-
tion of this vector on the internuclear axis with the Hamiltonian
from [13]. Surprisingly, the result was not zero:

[A(KL),H ]=−(
2Z1/r3

1

)
r × L · ez−

(
2Z2/r3

2

)
R(xpx + ypy).

(5)

Thus, the projection of Krivchenkov-Liberman’s vector on the
internuclear axis does not conserve.

Gurarie [14] considered the TCP described by the Hamilton
function

H = p2/2 − Z1/r1 − Z2/r2, (6)

where Z1 and Z2 are placed into z = a and z = −a,
respectively (atomic units are also used here). He presented
the following expression for a supergeneralized Runge-Lenz
vector:

A(G) = p × L − Z1(r − aez)/|r − aez|
−Z2(r + aez)/|r + aez|. (7)

In the limit of large R, it reduces to Redmond’s result from
Eq. (1).

We calculated the Poisson bracket [A(G),H ] of the projec-
tion of this vector on the interstellar axis with the Hamiltonian
from [14]. Surprisingly, again the result was not zero:

[A(G),H ]=−2a(xpx+ypy)(Z1/|r−aez|3 − Z2/|r + aez|3).

(8)

Thus, the projection of Gurarie’s vector on the interstellar axis
does not conserve.

To derive a correct expression for the supergeneralized
Runge-Lenz vector, we started from the Hamiltonian (or
Hamilton function) given by Eq. (3) and followed the first
few steps from Krivchenkov-Liberman’s paper [13], arriving
at the same expression in the elliptical coordinates as they did,
for the additional conserved quantity:

A = 1/R1/(w2 − v2)
{
(w2 − 1)(1 − v2)

(
p2

w − p2
v

)

− [(w2 − 1)/(1 − v2) − (1 − v2)/(w2 − 1)]p2
ϕ

}

−Z(1 + wv)/(w + v) + Z′(1 + v)(w − 1)/(w − v).

(9)

Then, using the relation between the elliptical coordinates and
the Cartesian coordinates,

x = (R/2)[(w2 − 1)(1 − v2)]1/2 cos ϕ,
(10)

y = (R/2)[(w2 − 1)(1 − v2)]1/2 sin ϕ, z = (R/2)wv,

we obtained from Eq. (9) the following: the supergeneralized
Runge-Lenz vector, whose projection on the internuclear axis
is really conserved, has the form

A = p × L − L2/Rez − Zr/r − Z′(R − r)/|R − r| + Z′ez,

ez = R/R. (11)

The Poisson bracket of the projection of the vector from
Eq. (11) on the internuclear axis

Az = p × L · ez − L2/R − Zz/r − Z′(R − z)/|R − r| + Z′,
(12)

with the Hamilton function from Eq. (3), vanishes indeed.
In the limit of large R, the expression from Eq. (12) reduces

to the following asymptotic form:

(Az)as = p × L · ez − L2/R − Zz/r + (1/2)(x2 + y2)Z′/R2.

(13)

Here the direction of the z axis is chosen from the charge Z

to the charge Z′. Compared to Redmond’s result from Eq. (1),
there is an extra term in Eq. (13): −L2/R. At first glance, this
might seem puzzling. However, the Poisson bracket of −L2/R

with the Hamilton function from Eq. (3) yields a term of the
order of 1/R3. Thus, the Poisson bracket of Aas from Eq. (13)
with the Hamilton function from Eq. (3), being calculated up to
(including) terms of the order of 1/R2, vanishes. This resolves
what might have seemed as the puzzle.

In the literature there are several expressions for the
separation constant for the TCP—the expressions not having
the form of a projection of any vector on the internuclear or
interstellar axis. Below we provide relations between those
expressions and our result.

In 1949, Erikson and Hill [15] presented the following
expression for the separation constant:

� = L′ · L′′ + 2a(Z1 cos θ1 − Z2 cos θ2), (14)

where L′ and L′′ are the angular momenta of the electron with
respect to Z1 and Z2, θ1 and θ2 are the angles between the radii
vectors r1 and r2 (directed from the nuclei to the electron) and
the positive direction of the z axis (from Z1 to Z2), and 2a is
the internuclear distance.

We found that it is related to our result from Eq. (12) as
follows:

� = R(Z′ − Az). (15)

In Landau-Lifshitz’s book of 1960 [7], there is the following
expression for the separation constant:

β =σ 2
(
p2

ρ+p2
ϕ/ρ2

) − M2 + 2mσ (α1 cos θ1 + α2 cos θ2),

(16)

where α1 and α2 are the nuclear charges with the sign opposite
to ours, ρ and ϕ are the cylindrical coordinates where the
z axis is the internuclear axis, pρ and pϕ are the canonical
momenta corresponding to these coordinates, m is the mass of
the particle (in our units m = 1), M is the angular momentum
of the electron with respect to the origin (which is at half the
internuclear distance), 2σ is the internuclear distance, and θ1

and θ2 are the angles between the radii vectors r1 and r2 and
the internuclear axis measured inside the triangle made by r1,
r2, and 2σ .

054503-2



BRIEF REPORTS PHYSICAL REVIEW A 85, 054503 (2012)

We found that it is related to our result from Eq. (12) as
follows:

β = R(Az − Z′). (17)

In 1967, Coulson and Joseph [16] presented the following
expression for the separation constant:

B = L2 + a2p2
z + 2aq1z/r1 − 2aq2z/r2, (18)

where q1 and q2 are the nuclear charges with the sign opposite
to ours, L is the angular momentum of the particle with respect
to the origin (which is at half the internuclear distance), 2a is
the internuclear distance, r1 and r2 are the distances from the
particle to the nuclei, z is the coordinate along the internuclear
axis, and pz is its corresponding canonical momentum.

We found that it is related to our result from Eq. (12) as
follows:

B = R(Z′ − Az) + R2H/2, (19)

where H is the Hamiltonian.
In the book by Komarov, Ponomarev, and Slavyanov

published in 1976 [2], the following expression for the
separation constant was presented:

	 = L2 + R2p2
z/4 + RZ1z/r1 − RZ2z/r2 − R2H/2. (20)

We found that it is related to our result from Eq. (12) as follows:

	 = R(Z′ − Az). (21)

III. CONCLUSIONS

We showed that the expressions for a supergeneralized
Runge-Lenz vector presented for the TCP by Krivchenkov and
Liberman [13] and by Gurarie [14] are incorrect. Its projection
on the internuclear (or interstellar) axis is not conserved.

We derived a correct supergeneralized Runge-Lenz vector,
whose projection on the internuclear or interstellar axis does
conserve. We also analyzed the asymptotic form of the
projection in the limit of large R.

Finally, since in the literature there are several expressions
for the separation constant for the TCP—the expressions not
having the form of a projection of any vector on the internuclear
or interstellar axis—we provided relations between those
expressions and our result.

The correct supergeneralized Runge-Lenz vector for the
TCP that we derived should be of a general theoretical interest
since the TCP is one of the most fundamental problems in
physics. It can also have practical applications: for example, it
can be used as a necessary tool while applying to the TCP the
robust perturbation theory for degenerate states (based on the
integrals of the motion) developed by Oks and Uzer [17].
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