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Transport of test particles in two-dimensional weak turbulence with waves propagating
along the poloidal direction is studied using a reduced model. Finite Larmor radius
(FLR) effects are included by gyroaveraging over one particle orbit. For low wave
amplitudes the motion is mostly regular with particles trapped in the potential
wells. As the amplitude increases the trajectories become chaotic and the Larmor
radius modifies the orbits. For a thermal distribution of Finite Larmor radii the
particle distribution function (PDF) is Gaussian for small ρth (thermal gyroradius)
but becomes non-Gaussian for large ρth. However, the time scaling of transport is
diffusive, as characterized by a linear dependence of the variance of the PDF with
time. An explanation for this behaviour is presented that provides an expression
for an effective diffusion coefficient and reproduces the numerical results for large
wave amplitudes which implies generalized chaos. When a shear flow is added
in the direction of wave propagation, a modified model is obtained that produces
free-streaming particle trajectories in addition to trapped ones; these contribute to
ballistic transport for low wave amplitude but produce super-ballistic transport in the
chaotic regime. As in the previous case, the PDF is Gaussian for low ρth becoming
non-Gaussian as it increases. The perpendicular transport presents the same behaviour
as in the case with no flow but the diffusion is faster in the presence of the flow.

Key words: plasma confinement, plasma nonlinear phenomena

1. Introduction
Transport in magnetic confinement devices is dominated by turbulent fluctuations

which originate from small scale instabilities that evolve nonlinearly. The low
frequency fluctuations are usually due to drift waves that extract energy from
pressure gradients. The study of turbulence and the associated transport involves
multiple scales, which can only be tackled by numerical simulations since analytical
treatments are extremely hard. Gyrokinetic models have become a widely used tool
for numerical simulations of turbulent transport (for a review see Garbet et al. 2010),
but unfortunately they are quite expensive and the interpretation of the results is
not straightforward. For this reason, it is convenient to perform studies with simpler
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models that incorporate the essential physical effects. One such scenario is to consider
transport in the limit of weak turbulence where the fluctuation spectrum can be
assumed fixed and particles move in this field. These models are not self-consistent
since they neglect the back reaction of particle motion on turbulence, but can provide
a reasonable description of transport when fluctuation levels are not too high.

Test particles can be used advantageously to study transport in a simpler way than
considering the self-consistent treatment involving turbulence theories. For electrostatic
turbulence the main transport is due to E × B velocities in the fluctuating electric
fields (E) in presence of the magnetic field (B). fields. The behaviour of a single
particle is then described by equations of motion for the guiding centre that, for a
constant magnetic field, can be cast in the form of a Hamiltonian system, which
can be studied using the well-known standard techniques developed for such systems.
In particular, the transition to chaos that occurs for time-dependent non-integrable
Hamiltonians leads to the establishment of chaotic transport and the conditions for
this to happen can be determined. This procedure has been applied in many cases
considering different kinds of fluctuating fields involving various numbers of modes.
The simplest situation that already exhibits chaotic behaviour is particle dynamics in
the presence of two waves with different phase velocities (Kleva & Drake 1984; del
Castillo-Negrete 2000). The relative phase velocity of the waves and its relation to the
associated E×B drift velocity determines the conditions for transition to global chaos.
In the weak turbulence regime, characterized by a continuum (infinite) spectrum of
non-interacting waves, transport becomes more complex (Horton 2017). However, if
all the waves are assumed to have the same amplitude and wave number, the E× B
equations of motion can be reduced to a Hamiltonian symplectic (area preserving)
discrete map (see for example Kleva & Drake 1984; Horton et al. 1998). In this case,
quasilinear arguments imply that, in the limit of widespread stochasticity, transport
is diffusive with a diffusivity proportional to the square of the wave amplitude.
When there is a background flow in addition to the waves, particles experience also
advection along the flow and the transport properties depend on the shear of the
background flow. The case of monotonic shear flows with two drifts waves was
studied by del Castillo-Negrete (1998, 2000). On the other hand, as discussed by del
Castillo-Negrete & Morrison (1993) and del Castillo-Negrete (2000), non-monotonic
shear flows are particularly interesting due to the ubiquitousness of the transport
barrier associated with robust invariant shearless KAM (Kolmogorov–Arnold–Moser)
curves characteristic of non-twist Hamiltonian systems.

It is convenient to emphasize that test-particle models are not self-consistent, which
limits the applicability of the results. In this respect, studies using these models do not
include modifications of the turbulent fluctuations due to the particle transport and thus
cannot describe equilibrium patterns. Applicability is limited to short time behaviour
and to small particle response. For the cases with a background flow mentioned above,
the possible modification of the transport barrier produced by the particle dynamics
is not accounted for, although this is a question of significant interest in problems
of transport barrier dynamics (e.g. Chôné et al. 2015). Additionally, if the particle
dynamics has a strong response to the wave spectrum, as will be found in this work
when a flow is included (where super-ballistic transport results), it is likely that the
spectrum will be modified, but this effect should be studied separately.

An important physical aspect that is not included in the E × B guiding centre
descriptions discussed above is the role of finite Larmor radius (FLR) effects.
Gustafson, del Castillo-Negrete & Dorland (2008) studied these effects by gyro-
averaging the E × B test-particle Hamiltonian in the case of two drift waves in a
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FLR effects on weak turbulence transport 3

monotonic shear flow. It was found that transport can be non-diffusive in the direction
of the flow and that FLR effects can give rise to non-Gaussian probability distribution
functions (PDF) with long tails. FLR effects have also been studied in non-monotonic
zonal flows by Martinell & del Castillo-Negrete (2013) where it was observed that
they have a stabilizing effect in the sense that the level of Hamiltonian chaos is
reduced as the Larmor radius increases. This means that particles with a larger
Larmor radius have less transport. A similar result was found by Dewhurst, Hnat
& Dendy (2010) where FLR effects in drift-wave turbulence were shown to reduce
the radial transport rate in cases without (Manfredi & Dendy 1997) and with zonal
flows. However, the transport along the flow direction has a superdiffusive scaling and
increases with the Larmor radius. More recently, FLR effects have been studied in
the context of Hamiltonian map models of transport in monotonic and non-monotonic
flows with a continuum spectrum of drift waves with a one-dimensional spatial
structure (da Fonseca, del Castillo-Negrete & Caldas 2014; da Fonseca et al. 2016).

The more general case of an infinite spectrum of waves with a two-dimensional
spatial structure propagating along the y-direction (poloidal direction in a tokamak
geometry) is of interest because the oscillations in the two spatial directions couple the
x (radial direction in a tokamak geometry) and the y degrees of freedom of the particle.
In this case, if all the waves are assumed to have the same wavenumber (ki = k) and
there is no background shear flow, the E× B guiding centre dynamics (i.e. ignoring
FLR effects) is described by the area preserving Hamiltonian map (Kleva & Drake
1984)

xn+1
+ = xn

+ − A sin kxn
− (1.1)

xn+1
− = xn

− + A sin kxn+1
+ , (1.2)

where x±= x± y. Here, A is the wave amplitude and n refers to the iteration number.
The properties of this mapping were studied by Karney (1979) in a study of heating by
lower-hybrid waves. In the case of a spectrum of one-dimensional waves propagating
along y with a linear monotonic shear flow (i.e. vy∼ x, where vy is the flow velocity in
y direction) transport is described by the well-known standard map which was studied
by Horton et al. (1998). This case was extended by da Fonseca et al. (2014) to include
FLR effects where the gyroaveraged standard map (GSM) was introduced to study the
resulting transport.

In the present paper we extend the model in (1.1)–(1.2) to include FLR effects. Our
specific goal is to study the role of FLR effects on transport in the weak turbulence
regime characterized by an infinite spectrum of waves oscillating in the x and y
directions. We first address the case with no background flow and show that the FLR
effects tend to maintain non-chaotic orbits until larger wave amplitudes are reached.
When the amplitude is large enough to have global chaos for a given Larmor radius,
the transport is diffusive. Considering the more realistic case of a thermal plasma with
a Maxwellian distribution of Larmor radii, the particle distribution functions (PDF)
become non-Gaussian but the transport scaling with time still shows a diffusive
character. This feature can be understood with a weighted superposition of Gaussian
PDFs. Then, a sheared background flow is introduced which is found to have a strong
effect on the transport parallel to the flow. In particular, it produces super-ballistic
transport due to a coupling of parallel and perpendicular transport. The perpendicular
transport remains diffusive although the diffusion coefficient is enhanced by the flow.

The rest of the paper is organized as follows. In § 2 we describe the transport model
used in the analysis of test-particle motion, starting from the guiding centre description
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and generalizing it to include FLR effects by the appropriate gyroaveraging. The phase
space properties of the relevant mapping are described focusing on the Larmor radius
dependence. The nature of transport is described in § 3 first for a fixed FLR and
later for a thermal distribution of Larmor radii. Section 4 includes the presence of
a background flow obtaining a modified mapping and showing that it produces super-
ballistic transport. Finally, the conclusions are given in § 5.

2. Transport models

We study transport following a Lagrangian treatment in which a large ensemble
of particles is considered whose motions are determined by a prescribed electrostatic
field representing drift waves (and possibly an ordered flow). A test-particle approach
is followed, so that particles do not modify the fields. This means self-consistency
requirements are not enforced but it allows us to perform analytical studies which
usually provide simple interpretations.

2.1. Guiding centre model
To first order, the motion of a charged particle in a magnetic field can be described
by the motion of its guiding centre. For a constant magnetic field B=B0ẑ the guiding
centre moves at the E× B drift velocity and therefore the trajectory is described by
the following equation

dr
dt
= E×B

B2
, (2.1)

where E is the electrostatic field, and B is the magnetic field and r is the particle
position. The particle position can be assumed to be the same as the guiding centre
position r= (x, y), when the Larmor radius is small. If the electric field is expressed
in terms of the electrostatic potential E=−∇φ′(x, y, t), the particle dynamics obtained
from (2.1) can be written as a Hamiltonian system

dx
dt
=−∂φ

∂y
,

dy
dt
= ∂φ
∂x
, (2.2a,b)

where φ plays the role of the Hamiltonian, while the spatial coordinates (x, y) are the
canonical conjugate phase space variables. Here the potential has been normalized to
φ = φ′/B to eliminate the magnetic field.

In the test-particle weak turbulence approximation adopted here, the spectrum of
waves drives the particle dynamics but the wave–wave interactions are neglected as
well as the feedback of the particles to the waves. To study particle dynamics in this
approximation we choose a broad drift-wave spectrum consisting of an infinite number
of waves propagating in the y-direction which is associated with the poloidal direction
in a toroidal plasma. Additionally, there is an oscillatory variation along the x direction
which represents the radial direction. To simplify the analysis all waves are assumed to
have the same wavenumber k and amplitude but different velocities, which are positive
and negative multiples of a fundamental frequency, ω0. That is, we adopt the following
model for the electrostatic potential

φ(x, y, t)= A
∞∑

n=−∞
cos(x+ θn) cos(y+ θn − nt), (2.3)
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where, following Kleva & Drake (1984), the phases θn are θn = 0 if n is even and
θn=π/2 if n is odd. This introduces a π/2 phase difference between successive waves
in the spectrum. By symmetry, choosing θn = 0 for all n amounts to simply double
the wave’s amplitude. The variables we use are normalized according to x, y→ kx, ky,
t→ω0t, A→ (k2/ω0)(φ1/B) where φ1 is the electric potential wave amplitude. Notice
that A represents the ratio of the electric drift velocity associated with the fluctuations
to the fundamental fluctuation phase speed, vφ = ω0/k. Alternatively, it can also be
written in terms of the electrostatic energy of the fluctuations, WE, relative to the
magnetic energy of the magnetic guide field, WB, as A= (WE/WB)

1/2(c/vφ).
Using the identities

∞∑
n=−∞

cos(nt)= 2π

∞∑
m=−∞

δ(t− 2πm), (2.4)

∞∑
n=−∞

(−1)n cos(nt)= 2π

∞∑
m=−∞

δ(t− (2m+ 1)π) (2.5)

the potential in (2.3) can be written as a sum of jumps every period of the
fundamental frequency

φ =πA
∞∑

m=−∞

[
cos(x+ y)δ(t− (2m+ 1)π)+ cos(x− y)δ(t− 2πm)

]
. (2.6)

Substituting (2.6) into (2.2) the equations of motion can be written in terms of the
variables x± = x± y as

dx+
dt
= −2πA

∞∑
m=−∞

sin(x−)δ(t− 2πm). (2.7)

dx−
dt
= 2πA

∞∑
m=−∞

sin(x+)δ(t− (2m+ 1)π). (2.8)

The periodic delta functions allow us to reduce the equations to a map in two steps,
one for each of the equations in (2.7) and (2.8). When combined to a single step the
resulting map is (Kleva & Drake 1984)

xn+1
+ = xn

+ − 2πA sin(xn
−) (2.9)

xn+1
− = xn

− + 2πA sin(xn+1
+ ). (2.10)

2.2. Gyroaveraged model
The zero Larmor radius approximation described above is not valid when the particle
energies are high or when the electric fields vary on a relatively small spatial scale,
since then the fields experienced by the particle in its orbit are quite different from
those at the guiding centre position. For these cases it is necessary to include FLR
effects which can be done in a simple way by averaging the motion of the particle
over one gyro-orbit. In this way, the E×B velocity on the right-hand side of (2.2), is
replaced by its value averaged over a ring of radius ρ, where ρ is the Larmor radius
(Lee 1987). Then, defining the gyrophase average of a function 〈ξ〉θ as

〈ξ〉θ ≡ 1
2π

∫ 2π

0
ξ (x+ ρ cos θ, y+ ρ sin θ) dθ (2.11)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000351
Downloaded from https://www.cambridge.org/core. Universidad Nacional de Mexico (UNAM), on 04 May 2018 at 01:09:08, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000351
https://www.cambridge.org/core


6 N. Kryukov, J. J. Martinell and D. del-Castillo-Negrete

(a) (b)

FIGURE 1. Regular particle orbits in phase space due to infinite spectrum of waves
with FLR effects included. There is a periodic array of closed orbits with elliptic and
hyperbolic points. Here the wave amplitude is A= 0.1 and the Larmor radius is (a) ρ= 0,
(b) ρ = 0.7.

the gyroaveraged equations take the form

dx
dt
=−

〈
∂φ

∂y

〉
θ

=−∂ 〈φ〉θ
∂y

,
dy
dt
=
〈
∂φ

∂x

〉
θ

=−∂ 〈φ〉θ
∂x

. (2.12a,b)

This procedure is similar to the one followed in gyrokinetic models where one follows
the motion of the guiding centre but FLR effects are retained. This is appropriate for
studying frequencies smaller than the gyrofrequency.

Applying this averaging to (2.3) gives

〈φ〉θ = A
2π

∫ 2π

0

[ ∞∑
n=−∞

cos(x+ ρ cos θ + θn) cos(y+ ρ sin θ + θn − nt)

]
dθ. (2.13)

The same procedure described in the previous subsection can be applied to this
gyroaveraged Hamiltonian to convert the resulting differential equation into a one-step
map. The averages over the gyrophase are reduced using the integral representation
of the Bessel function of order 0 as J0(x)= 1/2π

∫ 2π

0 cos(x sin θ) dθ . The result is

xn+1
+ = xn

+ − 2πAJ0(
√

2ρ) sin(xn
−) (2.14)

xn+1
− = xn

− + 2πAJ0(
√

2ρ) sin(xn+1
+ ), (2.15)

where ρ is the Larmor radius. Alternatively, one can arrive at this model by first
gyroaveraging the equations of motion in (2.7) and then constructing the map, or by
directly gyroaveraging of the guiding centre map in (2.9).

2.3. Dependence of phase space topology on FLR effects
The map resulting from the gyroaverage can be represented in the xy plane to
determine the corresponding topology of the particle trajectories. This is shown in
figure 1(a) for zero Larmor radius i.e. with no FLR effects. The amplitude of the
waves is quite small (A= 0.1) to make sure the motion is mostly regular. It is clear
that the particles are trapped in the waves, describing closed orbits. The fixed points,
defined by xn+1

+ = xn
+ ≡ x∗+ and xn+1

− = xn
− ≡ x∗− are given by sin(x∗±)= 0. This implies
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(a) (b)

FIGURE 2. Growth of chaos in phase space for large amplitude A = 0.4 showing
bifurcation of elliptic points for ρ = 0 in (a) an with a finite Larmor radius ρ = 0.7 in
(b) showing a reduction of the chaotic region.

that, in terms of x and y, x∗= (k+ l)π/2 and y∗= (k− l)π/2 with k and l integers. The
stability analysis shows that these fixed points are stable (elliptic) when k+ l is even,
whereas for odd k+ l they are hyperbolic points. This character of the fixed points can
be observed in figure 1(a); for instance (x, y)= (0, 0), (0,π), (0, 2π), corresponding to
(k, l)= (0, 0), (1,−1), (2,−2) are elliptic points and (x, y)= (π/2,π/2), (π/2, 3π/2),
corresponding to (k, l)= (1, 0), (2,−1) are hyperbolic points.

As the wave amplitude increases the presence of chaos becomes apparent near the
hyperbolic points and the remaining closed orbits around elliptic points are squeezed.
Eventually, when the amplitude is large enough, there will be global chaos. Figure 2(a)
shows the small regions of regular motion within the large chaotic region, for A= 0.4.

The effect of FLR is to stabilize the destabilizing nonlinear effect of the large
amplitudes as seen in figures 1(b) and 2(b) which show the phase space for ρ = 0.7
for the same amplitudes as figures 1(a) and 2(a). When chaos is not apparent there is
no appreciable difference with FLR. However, when there is already chaos, as for the
amplitude A= 0.4, the phase space is less chaotic when the Larmor radius is increased
up to a value ρ = x01, where x01 is the first zero of the Bessel function J0(x). If ρ is
further increased then the chaotic region gets larger again. This behaviour is repeated
according to the oscillating variation of J0(x).

3. Non-diffusive transport due to FLR effects
In this section we discuss numerical results showing evidence of non-diffusive

transport due to FLR effects. In particular, it is shown that for a thermal Maxwellian
distribution of Larmor radii, particle displacements do not exhibit the Gaussian
dependence observed in the case of zero Larmor radius dynamics.

The gyroaveraged map in (2.14)–(2.15) exhibits fairly regular motion for low
amplitude A and it becomes increasingly chaotic as A grows. As mentioned above,
chaos appears first around hyperbolic points and it extends to larger regions. For
small A, a significant fraction of the particles is trapped and moves periodically in
well-localized regions of phase space. These closed orbits around the elliptic points
form invariant surfaces which are elongated as A grows and those farther from the
O-point are destroyed. As shown in figure 2(a), when the amplitude A exceeds a
critical value Ac the period-one elliptic points bifurcate into two period-2 O-points. At
larger amplitudes these regions are eventually lost and there is widespread stochasticity
in the system. As observed by comparing (2.9)–(2.10) and (2.14)–(2.15), the main role
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FIGURE 3. Trapped particle fraction (i.e. particles not reaching a surface at r= 10 after
100 iterations) from a thermal distribution of Larmor radii for three values of the thermal
radius: ρth= 0.7 (green), 1 (blue) and 1.5 (red). Dashed lines are for the initial population
at elliptic point (0,0), continuous lines for hyperbolic point (π/2,π/2).

of the Larmor radius is to rescale the amplitude of the map by the factor J0(
√

2ρ).
Accordingly, if Ac0 denotes the critical value of the amplitude in the absence of FLR
effects, then the corresponding critical amplitude for Larmor radius ρ is

Ac = Ac0

J0(
√

2ρ)
≈ Ac0

(
1+ ρ

2

2

)
, (3.1)

where the last expression assumes small ρ. The numerical value of Ac0 is found to be
Ac0 ≈ 0.3184.

As is well known, in the absence of FLR effects (i.e. for ρ = 0), in the weak
turbulence limit (i.e. for large values of A) there is widespread stochasticity and
particles exhibit diffusive Brownian motion. In particular, an ensemble of particles
initially located in a small square around (x, y) = (x0, y0) exhibits Gaussian
spreading in the x and y directions. That is, if Px(δx, t) denotes the probability
density of displacements in the x-direction at time t and fixed y = y0, then
Px(δx, t) = (1/σx

√
2π) exp(−δx2/2σx) where σx = σx(t) denotes the variance, with

a similar expression for the displacements in y. Note that due to isotropy, the
variance of the displacements in the x and y directions is the same. From here
it follows that the probability density of radial displacements, r = √δx2 + δy2, is
the Rayleigh distribution P(δr, t) = (1/σ 2)r exp(−δr2/2σ). Moreover, the variance
σ(t) = 〈r2〉 = ∫∞0 r2P(δr, t) dr exhibits the well-known diffusive linear scaling with
time σ(t)∼ t. When the time evolution is discrete, as in the case of the discrete area
preserving maps of interest in this paper, σ(n) ∼ n where n is the iteration number
and σ(n) =∑i(r

n
i − r0

i )
2 ≈∑i(r

n
i )

2 with rn
i denoting the radial displacement of the

ith particle at time n, assuming the initial position r0
i � rn

i . In the highly chaotic
regime there is no difference in the location of the initial condition; only when chaos
is starting to spread out is there a distinction in the transport depending on whether
(x0, y0) is an elliptical or a hyperbolic point. This is exemplified in figure 3 where
the fraction of particles remaining within a region bounded by a distant surface after
a time t is plotted for the two types of initial positions. For A� 1 all cases tend to
the same value. Following da Fonseca et al. (2016), in this figure we plot the fraction
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(a) (b)

FIGURE 4. PDF of displacements in y of an ensemble of particles with a Maxwellian
distribution of Larmor radii in (3.2) (continuous blue line) with A = 1, ρth = 1, in log–
linear scale (a) and in linear scale (b). The dashed red line is the fit from (3.6). The long
tails indicate an exponential-like decay as opposed to the Gaussian decay characteristic of
ensembles with zero Larmor radii. Also the relatively high value of the kurtosis, K= 6.56,
indicates strong departures with respect to the K = 3 Gaussian case without FLR effects.

of trapped particles (i.e. not reaching the surface) as function of the amplitude A.
Two sets of curves are represented, one in which the initial population is around an
elliptic point (dashed lines) and another for a hyperbolic point. For an elliptic point
all particles are trapped for small A and they start escaping after a threshold A≈ 0.4.
In the hyperbolic point case, there are always untrapped particles for any value of
A. The difference gets smaller as A increases until it disappears for large enough A,
when global chaos practically erases any trace of elliptic or hyperbolic points.

These ρ = 0 results directly apply to the FLR case provided all the particles have
the same Larmor radius, i.e. provided ρi = ρ for i = 1, 2, . . . where ρi denotes the
Larmor radius of the ith particle. This is because, as discussed before, when all the
particles have the same Larmor radius, FLR effects simply rescale the wave amplitude
by the factor J0(

√
2ρ).

However, in the case when the particles have different Larmor radii, the probability
distribution of displacements is in general non-Gaussian and the system can exhibit
highly non-trivial statistical behaviour. The study of this problem is one of the main
goals of this paper. As a starting point we assume a thermal Maxwellian equilibrium
distribution function of Larmor radii of the form

f (ρ)= (2ρ/ρ2
th) exp[−(ρ/ρth)

2], (3.2)

where ρth =
√

2mkBT/(|q|B0) is the thermal Larmor radius. As before, an initial
particle population with gyroradii taken from (3.2) is followed to obtain the PDF. In
figure 4 the PDF for motion along the y direction is presented in both linear and
log-linear scales for the case of ρth = 1 and a wave amplitude A = 1, for which
there is already global chaos. It can be seen that the distribution is non-Gaussian,
which is better appreciated in the log-linear plot: the central part, near the origin, has
a Gaussian shape but it transitions to a long-tailed function for large |y| having a
falloff that may be fit by a stretched exponential, f (y)∼ exp(−βyγ ) with γ & 1. The
kurtosis of this PDF is K = 6.56, more than twice the value of 3 for a Gaussian. In
figure 5 the PDF is also shown for the same ρth and A = 20 for which the orbits
are all chaotic and the same behaviour is observed. For all the values of ρth and A
the PDFs have in general kurtosis of the order of 5–7, which means all cases have
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10 N. Kryukov, J. J. Martinell and D. del-Castillo-Negrete

(a) (b)

FIGURE 5. PDF from (3.6) (dashed red) for ρth = 1 and A = 20 in log–linear (a) and
linear (b) scales fitting the numerically obtained PDF for the same parameters (blue).

FIGURE 6. Variance of the PDF for thermal particles with ρth = 1 as function of time
in log–log scale, showing the linear scaling for A = 1 (lower curve) and A = 20 (upper
curve). The regression fit is shown with dashed lines and the corresponding equation is
shown.

long tails. Incidentally, it has been checked that the PDF tends to a Gaussian as the
thermal radius approaches zero (i.e. T→ 0), as would be expected.

On the other hand, the variance increases in time as σy,th(t)∼ t as can be seen in
figure 6, indicating that the transport maintains a diffusive scaling. Two values of A
are shown and we see that the spread of the distribution (given by σy,th) increases with
A due to the increase of chaos level. When A is not so large there are more particles
with closed orbits which do not diffuse. This effect can be appreciated better if we
look at figure 3 which gives the number of particles not reaching a distant surface
after a given time. It shows that the fraction of trapped particles always decreases with
A, for any value of ρth and it increases with ρth since the chaotic region is reduced.

The change of the PDF from Gaussian for a fixed Larmor radius to a heavy-tailed
non-Gaussian for a thermal distribution of Larmor radii can be explained from the
addition of distribution functions. It is a well-known fact that when two Gaussians
with different widths are added the result is not a Gaussian but a distribution with
kurtosis larger than 3. To use this fact for our case, we start by writing the PDF for
a single Larmor radius, ρ = ρ0. Quasilinear arguments (see for example Lichtenberg
& Lieberman 1992) show that in the weak turbulence limit

Pρ0(y, t)= 1√
2πD(ρ0)t

exp
[ −y2

2D(ρ0)t

]
, (3.3)
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FLR effects on weak turbulence transport 11

where the diffusion coefficient D(ρ0) can be obtained from the mapping, by
constructing the cumulative square displacements, averaged over all particles (Karney
1979)

S≡
n∑

j=1

〈(yj+1 − yj)2〉p = 1
4

n∑
j=1

〈([x j+1
+ − xj

+] − [xj+1
− − xj

−])2〉p

= [A(ρ0)]2
4

n∑
j=1

〈(sin(xj
−)− sin(xj+1

+ ))2〉p

= ([A(ρ0)]2/4)n, (3.4)

where the definition A(ρ0) = 2πAJ0(
√

2ρ0) was introduced. In the last step it
was assumed that the displacements have a random distribution as a result of the
prevalence of chaotic orbits, which would be valid only in the large A weak turbulence
limit. The variance is σy = 〈(yn − y0)2〉p = S +∑n

i=1

∑n
j6=i〈(yj+1 − yj)(yi+1 − yi)〉p = S

since the second term vanishes for random (independent) displacements. Then, since
the iteration number plays the role of time, the diffusion coefficient is

D(ρ0)= S
2n
= 1

2

[
πAJ0

(√
2ρ0

)]2
. (3.5)

When there is a distribution of Larmor radii given by f (ρ), i.e. when each particle
has its own ρ, the resulting PDF should be a weighted average over all Larmor radii,
that is,

P(y, t)=
∫ ∞

0

f (ρ)√
2πD0J2

0(
√

2ρ)t
exp

[ −y2

2D0J2
0(
√

2ρ)t

]
dρ, (3.6)

where D0=π2A2. In figures 4 and 5 we have plotted the PDF given by (3.6) with the
dashed red lines to compare with the numerically obtained PDF. It is clear that there
is an almost perfect fit to the non-Gaussian PDF, reproducing especially well the long
tails. As expected, the agreement is better for the large A in figure 5 although even
for A= 1 the matching is good.

As already seen in figure 6, the variance still exhibits diffusive scaling even though
the PDF has quite heavy tails. This can be derived from the effective PDF, equation
(3.6). Because of symmetry, the odd moments are zero, 〈y2n+1〉 = 0, where 〈ζ 〉 =∫∞

0 ζP(y, t) dy. The even moments are given by

〈y2n〉 =
∫ ∞

0
dρ

f (ρ)√
2πD0J2

0(
√

2ρ)t

∫ ∞
−∞

y2n exp
[ −y2

2D0J2
0(
√

2ρ)t

]
dy. (3.7)

From here

〈y2n〉 = (2n− 1)!!Dn
0tn
∫ ∞

0
dρf (ρ)J2n

0 (
√

2ρ)= (2n− 1)!!〈Dn〉tn, (3.8)

which indicates that the time evolution of the moments exhibit diffusive scaling, in
particular, the variance σ = 〈y2〉 is

〈y2〉 = 〈D〉t, (3.9)
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FIGURE 7. Effective diffusion coefficient for the transport associated with the PDF
in (3.6).

(a) (b)

FIGURE 8. Rescaled PDF as a function of the similarity variable x = y/
√〈D〉t for 3

different times t = 500 (solid blue), t = 1000 (dashed green) and t = 5000 (dotted red)
for the values of ρth = 0.1 (a) and ρth = 1 (b). They all collapse to a single function that
depends on ρth. Theoretical curves are black dashed.

where the effective diffusion coefficient is 〈D〉/2, with

〈D〉 =D0e−ρ
2
thI0(ρ

2
th). (3.10)

This is shown in figure 7 as a function of the thermal radius. We notice that for ρth &
2 the diffusion is considerably reduced. The expression (3.10) provides also a good
representation of the slope of the line in figure 6 for the transport calculations, since,
for the values in that plot, 100.641 = 4.38 ≈ 〈D〉 = π2e−1I0(1) = 4.59. The quasilinear
scaling 〈D〉 ∼ A2 also reproduces the results of figure 6 for the two amplitudes since
103.235/100.641 = 392≈ 202.

An interesting property is that, as shown in figure 8, the PDF in (3.6) for a thermal
distribution of finite Larmor radii exhibits the self-similar scaling

P(y, t)= 1√〈D〉tGρth

(
y√〈D〉t

)
, (3.11)

with a scaling function Gρth(ξ). The plots in figure 8 show the PDF as a function of
scaled variables for two values of the thermal radius at three different times, showing
that the self-similarity holds. The interesting feature is that the shape of the function
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FLR effects on weak turbulence transport 13

FIGURE 9. Dependence κ(ρth) of the kurtosis on the thermal radius: the theoretical
dependence from (3.12) (solid blue) and the numerical dependences for A = 1 (dashed
orange), A= 5 (dot-dashed green) and A= 20 (dotted red).

Gρth(ξ) depends on the value of the thermal radius and it is a Gaussian for small ρth.
However, it becomes non-Gaussian for ρth of the order of 1. As it turns out Gρth(ξ)
has nearly exponential tails.

The agreement of the analytical expression in (3.10) with the numerical calculations
of transport is reasonable only when the mapping is sufficiently chaotic, i.e. for large
A. An analytical expression for the kurtosis can also be obtained, and is valid in the
same limit. According to (3.6) it is given by

κ = 6e2ρ2
th

I2
0

(
ρ2

th

) ∫ ∞
0

ρ

ρ2
th

e−ρ
2/ρ2

thJ4
0

(√
2ρ
)

dρ. (3.12)

As shown in figure 9, the agreement of this expression with the numerical results
is good for large A. This is so because, in that case, most particles in the thermal
distribution, even those with large ρ, have chaotic orbits. For small A the kurtosis is
larger because some fraction of the particles is still trapped while the bulk population
travels away from the starting point, which produces a very broad PDF. An interesting
relationship can be written for the kurtosis and the diffusion coefficient

κ = 3
〈D2〉
〈D〉2 = 3

〈J4
0(
√

2ρ)〉
[〈J2

0(
√

2ρ)〉]2 . (3.13)

Asymptotic expressions for large and small ρth can be found. As ρth approaches
infinity

κ ≈ 6 e2ρ2
th[

eρ2
th/
√

2πρ2
th

]2

∫ ∞
0

ρ

ρ2
th

J4
0

(√
2ρ
)

dρ ≈ 12π

∫ ∞
0
ρJ4

0

(√
2ρ
)

dρ (3.14)

evaluating the integral yields

κ(ρth→∞)→ 12π(0.77085)≈ 29.06. (3.15)

On the other hand, when ρth→ 0

κ ≈ 3(1+ 2ρ2
th)(

1+ ρ4
th/4
)2

∫ ∞
0

[
2ρ
ρ2

th
e−ρ

2/ρ2
th

]
J4

0

(√
2ρ
)

dρ ≈ 3(1+ 2ρ2
th) (3.16)
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14 N. Kryukov, J. J. Martinell and D. del-Castillo-Negrete

the last step is because the term in square brackets tends to a delta function as ρth→0.
This parabolic-like behaviour for small ρth can be noticed in figure 9. Although not
shown in figure 9, the numerical computations confirm the asymptotic value ≈29 for
ρth� 1.

It should be mentioned that, by symmetry, the same analysis made for the y
transport holds for transport along the x direction. That is, when all the particles
have the same Larmor radius the PDF of the x-displacements is Gaussian, but when
the distribution of Larmor radii is Maxwellian, the PDF is not Gaussian. However, in
both cases, the variance of displacements in x exhibits diffusive scaling in time.

4. Transport analysis in the presence of a background flow
4.1. Transport model

If, in addition to the wave spectrum, there is a background E×B flow, the potential
can be modelled as

φ = φ0(x)+ A
∞∑

n=−∞
cos(x+ θn) cos(y+ θn − nt), (4.1)

where φ0(x) represents a shear flow in the y-direction with velocity v0 = dφ0/dx. To
derive the equations of motion including FLR effects, we gyroaverage the potential,

〈φ〉 = 〈φ0(x)〉 + AJ0(
√

2ρ)
∞∑

n=−∞
cos(x+ θn) cos(y+ θn − nt), (4.2)

and repeat the procedure outlined in the previous section, converting a two-step map
to a one-step map. This time, the new term prevents the map from being exact, but
provides a discrete approximation. Thus we arrive at the symplectic discrete mapping
model, which in terms of the x± variables can be written as

xn+1
+ = xn

+ − 2πAJ0(
√

2ρ) sin(xn
−)+Ω

(
xn
+ + xn

−
2

)
(4.3)

xn+1
− = xn

− + 2πAJ0(
√

2ρ) sin(xn+1
+ )−Ω

(
xn+1
+ + xn+1

−
2

)
, (4.4)

where Ω(xn) = π[(d〈φ0(x)〉/dx)n+1/2 + (d〈φ0(x)〉/dx)n] and Ω(xn+1) = π[(d〈φ0(x)〉/
dx)n+1+ (d〈φ0(x)〉/dx)n+1/2] are average velocities between steps. Depending on φ0(x),
the flow velocity Ω(x) can be monotonic or non-monotonic. The first case gives rise
to a twist mapping while for the second the map is non-twist.

In general, the map in (4.3)–(4.4) is implicit. For the case of a monotonic, linear
velocity profile, Ω(x)=Cx, it can be written in the explicit form

xn+1
+ = xn

+ − 2πAJ0(
√

2ρ) sin(xn
−)+

C
2

(
xn
+ + xn

−
)

(4.5)

xn+1
− = 1

1−C/2

[
xn
− + 2πAJ0(

√
2ρ) sin(xn+1

+ )− C
2

xn+1
+

]
. (4.6)

Here, the dimensionless constant C is related to the dimensional electric potential
responsible of the flow φ0 by C = (k2/ω0)(φ0/B). This represents the ratio of the
background flow velocity to the fluctuations’ fundamental phase speed vφ . This
mapping has to be restricted to values of C< 2 since for C= 2 it becomes singular.
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FLR effects on weak turbulence transport 15

(a) (b) (c) (d)

FIGURE 10. Phase space trajectories for the mapping with flow when C= 0.5. (a) ρ = 0
and A= 0.02; (b) ρ= 0 and A= 0.1; (c) ρ= 0.5 and A= 0.1; (d) ρ= 0.5 and A= 0.3. The
streaming regular motion for small wave amplitude and ρ becomes chaotic as A grows.

4.2. Phase space topology
The phase space trajectories for the mapping (4.5) and (4.6) are shown in figure 10
for four different sets of parameters. The shear flow modifies the phase space
topology, creating open orbits corresponding to particles streaming with the flow,
when the Larmor radius is zero (see figure 10a). In general, the presence of shear
flows is related to the appearance of transport barriers. This is also the case in the
present mapping that exhibits invariant tori represented by the vertical trajectories.
The period-one orbits (fixed points) can be found by setting

A(ρ) sin x∗± =
C
2
(x∗+ + x∗−), (4.7)

with A(ρ) defined after (3.4), which can be satisfied when x∗+ = −x∗− = kπ for any
integer k. In terms of the original coordinates this means (x∗, y∗) = (0, kπ). The
stability analysis shows that the fixed point is stable (elliptic) provided

[−A(ρ)+ (−1)k(C−C2/4)]A(ρ)+C3/8< 0, (4.8)

and unstable (hyperbolic) otherwise. When ρ is such that J0(
√

2ρ) > 0 and k is even
(as for the fixed point at the origin) the condition to be an elliptic point is C3/8 <
A(ρ)[A(ρ) − C + C2/4], and thus, as the wave amplitude increases, the hyperbolic
points become elliptic (see figure 10b). On the other hand, the fixed points for odd k
are elliptic and remain elliptic since the condition C3/8− A(ρ)[A(ρ)+C−C2/4]< 0
is always fulfilled for positive J0(

√
2ρ) and small C. For large C, orbits are chaotic

around hyperbolic points and thus there are no longer fixed points there.
As before, the phase space becomes chaotic when A gets large. Chaos starts at

hyperbolic points and the elliptic points survive but the surrounding region with
closed orbits shrinks, experiencing bifurcations to period-2 orbits (see figure 10d).
The bifurcations occur at smaller values of A than when there is no flow. For large
enough A no trace of regular orbits remains and total chaos is apparent. For this case
the effect of the FLR is also to reduce the chaos as seen comparing figure 10(b,c).
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(a) (b)

FIGURE 11. Histograms for the step length sizes |yn+1 − yn| in the chaotic regime with
flow. There is a large contribution of very long jumps whose mean size strongly increases
with time: (a) is for N = 5000 iterations of the map while (b) is for N = 105.

(a) (b)

FIGURE 12. (a) Variance of the y displacements for thermal particles with ρth = 1 as
function of time in log–log scale, showing the cubic scaling for A= 1 (lower curve) and
A= 20 (upper curve). (b) Variance for x for the same cases of (a). The regression fit is
shown with dashed lines together with the corresponding equation.

4.3. Non-diffusive super-ballistic transport
In the presence of a background flow there is no isotropy and the dynamics in the x
and y directions is quite different. The transport in x is not much modified but the flow
changes the transport in y dramatically. The statistical analysis of the motion along y
of an ensemble of particles with the same Larmor radius shows a surprising feature:
the particle distribution in the chaotic regime evolves in time displaying a highly non-
diffusive scaling, i.e. its variance scales as σy ∼ t3. This is even faster than ballistic
transport (σy∼ t2) which means that the particles experience some kind of acceleration
when the trajectories are chaotic. Upon examination, it is found that there is a large
contribution of large jumps whose size increases with time. This is apparent in the
time evolution of the one-step displacements |yn+1− yn|. As figure 11 shows, the mean
step size grows with the number of iterations and the distribution peaks at very large
steps. In the case of a single initial condition (one particle), numerical results indicate
that the maximum step size scales as |1y| ∼ t1/2. It has to be mentioned that for cases
with low or no chaos (small A and C), the transport is ballistic σy ∼ t2, as it would
be expected, since particles are simply transported by the parallel flow.

The cubic scaling of the variance with time is preserved when the particle ensemble
has a Maxwellian distribution of Larmor radii. This is shown in figure 12(a) for
amplitudes A = 1 and A = 20. In contrast to this atypical behaviour, the PDF of y
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FIGURE 13. PDF in y direction with background flow after 1000 time steps in log–linear
scale for ρth = 1 showing non-Gaussian tails.

displacements exhibits a nearly normal distribution with kurtosis around 3 for small
values of ρth. As ρth increases the PDF departs more and more from a Gaussian –
the kurtosis increases. The long-tailed PDF for ρth = 1 is shown in figure 13. Notice
the large extension spanned as a result of the very fast motions. On the other hand,
the kurtosis is almost insensitive to the value of the flow parameter C.

The accelerated transport observed for the displacement along the y direction is
due to the presence of flow combined with the chaotic transport. If the waves are
removed (A = 0) the flow alone produces ballistic transport with no evidence of
accelerated motion. On the other hand, the case with no flow analysed previously
showed a diffusive transport. Thus, it is the superposition of both that adds up to
produce the cubic scaling.

To explore the origin of the super-ballistic scaling note that from (4.5)–(4.6) it
follows that

1x≡ xn+1 − xn = − A(ρ)
2−C

[sin(xn
−)− sin(xn+1

+ )] (4.9)

1y≡ yn+1 − yn = Cxn − A(ρ)
2−C

[(1−C) sin(xn
−)+ sin(xn+1

+ )]. (4.10)

According to (4.9), the step size in x is bounded by |1x|< 2A(ρ)/(2− C) for C <
2. On the other hand, the displacement in y, 1y depends on the instantaneous x
position across the flow and it is in principle unbounded. This means that, as the
particle goes farther from the origin with the usual random walk in x, the jumps in
y get larger; it also has the random contribution but this is bounded to 1ymax,rand =
A(ρ). This implies that there is a coupling of the motions across and along the flow.
The chaotic displacements across the flow produced by the x variation of the waves,
transfer energy to the parallel motion.

It is interesting to ask whether the PDF for y possesses a self-similar property.
Given the cubic scaling one would expect a self-similarity equation of the type

P(y, t)= 1
t3/2

Gρth

( y
t3/2

)
. (4.11)

Since there is no diffusive transport we cannot associate a transport coefficient
with this relation, so it only involves the time. Equation (4.11) was tested for the
numerically obtained PDF and it was found that there is indeed this self-similar
behaviour as shown in figure 14.
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18 N. Kryukov, J. J. Martinell and D. del-Castillo-Negrete

FIGURE 14. Self-similarity of the PDF in the y-direction with flow for ρth = 1, A = 20
and C= 0.7 plotted for three times: t= 500, 1000 and 5000.

FIGURE 15. PDF for the x-direction for ρth = 1, A= 20 and C= 0.7 obtained from (3.6)
using the value of D from (3.5) (dashed red) fitting the numerically obtained PDF for the
same parameters (solid blue).

In the strongly chaotic regime, the displacements in the x-direction exhibit diffusive
scaling σx,th ∼ t as seen in figure 12(b). Thus, the same theoretical analysis made for
the case with no background flow regarding the superposition of Gaussian PDFs for a
thermal distribution of Larmor radii can be made in this case. As a result the PDF for
a thermal population becomes non-Gaussian, although it is closer to a Gaussian for
small ρth. However, the presence of flow in y does affect the particle diffusion along
x. The diffusion coefficient obtained by the same procedure leading to (3.5) is now

D(ρ)= 1
2(1−C/2)

(πAJ0(
√

2ρ))2. (4.12)

This means that the radial diffusion in a toroidal device is increased by the shear flow.
With this expression, the PDF for a thermal distribution of Larmor radii can be again
calculated with (3.6) and the fit to the numerical results is also very good as seen in
figure 15.

5. Conclusions

The E×B transport of test particles in the weak turbulence regime has been studied
focusing on the effect of the finite Larmor radius. It was found that inclusion of the
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FLR changes the properties of transport, turning it less chaotic for ρ < x01, where
x01 denotes the first zero of the Bessel function, and then the chaotic regions size
oscillate as ρ grows. In the chaotic regime, corresponding to large wave amplitudes,
the particle distribution function is Gaussian and the transport has a diffusive character,
meaning that the squared width of the PDF increases linearly with time. When the
ensemble of particles has a Maxwellian distribution of Larmor radii, the PDF becomes
non-Gaussian. This is a novel result of this work and it can be explained by the
fact that the superposition of two or more Gaussians of different widths is in general
non-Gaussian. However, it is shown that the transport still has a diffusive scaling in
time, with an effective diffusion coefficient that is a decreasing function of the thermal
Larmor radius ρth. It is shown that the PDFs have a self-similar property that scales
with time in the same way as diffusive processes. For small ρth the self-similarity
function is Gaussian but for ρth > 1 this function is no longer Gaussian and exhibits
tails of the type of a stretched exponential.

A consequence of this is that particle orbits with large Larmor radius, such as
alpha particles, supra-thermal ions, or electrons associated with auxiliary heating,
need a higher level of turbulence to become chaotic and show diffusive transport.
Additionally, for the bulk thermal plasma, the effective diffusion is slower for high
temperature, which is a desirable effect for having good confinement in burning
plasmas. Also, the statistical distribution of particles departs from a normal distribution
as the temperature increases. This implies that increasingly larger numbers of particles
can reach farther locations as a result of FLR effects. The same results are obtained
for motions in both x and y directions (i.e. radial and poloidal).

In the presence of a background flow with linear shear a symplectic mapping
can be constructed with properties strikingly different from the mapping without
flow. In particular, the chaotic transport in the direction of the flow becomes strongly
non-diffusive: the spread of particle distribution scales as σy∼ t3. For wave amplitudes
that still do not produce significant chaos the transport is ballistic σy ∼ t2 due to
the convection produced by the flow. In contrast, the transport in the direction
perpendicular to the flow is still diffusive. In this case, the same properties seen
in the case with no flow are observed but with an increase in the diffusion due to
the presence of flow. In particular, the non-Gaussian PDF resulting from a thermal
distribution of FLRs, can be fit by a theoretical PDF produced by an effective
diffusion coefficient.

The accelerated transport along the flow can be understood by the presence of an
important contribution of long jumps that grow in size with time. These growing
flights give rise to an accelerated motion parallel to the flow that is due to the
coupling of chaotic transversal displacements with the ballistic transport along
the flow. The two-dimensional waves have the effect of transferring energy from
perpendicular to parallel motion. This is produced by the fact that the waves involve
oscillations in both x and y directions. This is not an FLR effect but deserves further
study.

However, regarding transport in toroidal plasmas, the accelerated transport does not
have consequences for confinement since it is associated with the poloidal motion,
which is also the direction of the flow. It just means that the poloidal spread of
particles could be extremely fast. On the other hand, the radial transport has the
diffusive properties found in the case with no flow except that the effect of a sheared
poloidal rotation produces a faster diffusion.
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