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Abstract
We present efficient algorithms to calculate trajectories for periodic Lorentz
gases consisting of square lattices of circular obstacles in two dimensions, and
simple cubic lattices of spheres in three dimensions; these become increasingly
efficient as the radius of the obstacles tends to 0, the so-called Boltzmann–
Grad limit. The 2D algorithm applies continued fractions to obtain the exact
disc with which a particle will collide at each step, instead of using periodic
boundary conditions as in the classical algorithm. The 3D version incorporates
the 2D algorithm by projecting to the three coordinate planes. As an appli-
cation, we calculate distributions of free path lengths close to the Boltzmann–
Grad limit for certain Lorentz gases. We also show how the algorithms may be
applied to deal with general crystal lattices.

Keywords: Lorentz gas, numerical algorithms, billard models, free paths

(Some figures may appear in colour only in the online journal)

1. Introduction

Lorentz gases are simple physical systems that present deterministic chaos [1], and are a
popular model in statistical mechanics and nonlinear dynamics. This model consists of point
particles that move freely until they encounter obstacles, often spheres, where they undergo
elastic collisions.
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These systems can have different configurations of obstacles, e.g., random arrangements
[2–4] or quasiperiodic structure [5, 6]. However, due to its simplicity, the periodic case has
been most widely studied; see, e.g., [7–10]. In this case, the model is equivalent to a Sinai
billiard [7]. Many of the results obtained theoretically for these gases are in the limit where
obstacles are very small, i.e., the so-called Boltzmann–Grad limit [11–19]. There are still
many interesting open questions in this area [20–23].

The standard simulation method for periodic Lorentz gases is to reduce to a single cell
with periodic boundary conditions, and, in the simplest case, an obstacle in the centre of the
cell [24, 25]. However, this requires that the program check in each cell whether the particle
collides with the obstacle in the cell, or if it will move to the next cell. If the obstacle is large,
it is quite likely that the particle will collide each time it crosses into a new cell. However, for
very small obstacles, this method becomes very inefficient.

Instead, we would like to just find the coordinates of the next obstacle with which the
particle will collide, given its initial position and velocity. This turns out to be closely related
to the best rational approximant to an irrational number, and can be solved using the con-
tinued-fraction algorithm. Continued fractions have often been used to provide information
about the free path distribution of the periodic Lorentz gas in the Boltzmann–Grad limit
[8, 9, 11–17]. An algorithm along these lines was previously developed: see comments in
[26]; however, it was never published [T Geisel, private communication]. Caglioti and Golse
developed a method to encode the trajectories of particles using the continued fraction
algorithm and the so-called 3-length theorem [11, 12].

However, Golse’s algorithm works only if the particle leaves the surface of a disk. This
restriction prevents the algorithm from being used in other geometries, such as two incom-
mensurate overlapping arrays of square lattices, or with different shapes of obstacles; such
systems may produce a number of surprising effects [27].

On the other hand, due to the construction of Golse’s algorithm, it is not possible to use it
in higher dimensions, which is ‘a notoriously more difficult problem’ [12]. Recent advances
on multidimensional continued-fraction algorithms may provide a possible future direction
[28, 29], although here we have opted for a different approach for higher-dimensional
systems.

In this paper, we develop an efficient algorithm to find a collision with a 2D square lattice
of discs starting from an arbitrary initial condition. We then use that 2D algorithm as part of
an efficient algorithm for a 3D simple cubic lattice by projecting onto coordinate planes.
Finally, we show how obstacles arranged on arbitrary (periodic) crystal lattices may be
treated.

2. Classical algorithm for the periodic Lorentz gas

We begin by recalling the classical algorithm for a Lorentz gas on a d-dimensional (hyper)-
cubic lattice, where each cell contains a single spherical obstacle of radius r. The simplest

method is to locate the centre of the obstacle at the centre of a cubic cell , ,
d1

2

1

2)⎡⎣- and to

track which cell n dÎ the particle is in using periodic boundary conditions: when a particle
hits a cell boundary, its position is reset to the opposite boundary and the cell counter n is
updated accordingly; see figure 1.

In each cell, the classical algorithm is as follows. For a particle with initial position x and
velocity v, a collision occurs with the disc with centre at c and radius r at a time t* if
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This gives a quadratic equation for the collision time, and hence
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provided that the condition B C 02 - is satisfied. If this happens, then the collision
position is tx v *+ . If the condition is not satisfied, then the trajectory misses the disc.

If no collision with the obstacle occurs, i.e. when B C 0,2 - < the velocity is conserved
and the particle will hit one of the cell boundaries. To determine which boundary will be hit,
we find intersection times of the trajectory with each cell boundary (lines 2D or planes in 3D),
given by

t
x

v
,i

i

i
,

1
2=

 -


where i runs from 1 to the number of dimensions (2 or 3) and the sign corresponds to the two
opposite faces in direction i. The least positive time then gives the collision time with the
boundary. Depending on which boundary was hit, we move to the new unit cell and repeat the
process: if ti, is the minimum time, then the positive (respectively negative) ith boundary is
hit, and the ith component of the cell is updated to n n 1.i i¢ = 

3. Efficient 2D algorithm

The classical algorithm is efficient for large radii r, but very inefficient once r is small, since a
trajectory will cross many cells before encountering a disc.

In this section, we develop an algorithm to simulate the periodic Lorentz gas on a 2D
square lattice, based on the use of continued fractions, whose goal is to calculate efficiently the
first disc hit by a particle, even for very small values of the radius r. Without loss of
generality, we will use the lattice formed by the integer coordinates in the 2D plane.

Figure 1. Reducing the dynamics in a periodic lattice to a single cell with periodic
boundary conditions.
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We wish to calculate the minimal time t 0* > such that a collision occurs with some disc
centred at q pc , ,( )= with q and p integers, by ‘jumping’ straight to the correct disc; see
figure 2.

3.1. Continued fraction algorithm: approximation of an irrational number by a rational

In this section we recall the continued fraction algorithm and some properties of continued
fractions; see, e.g., [30] for proofs. The geometrical interpretation has been suggested before
by many other authors; see, for example, [31].

A continued fraction is obtained via an iterative process, representing a number α as the
sum of its integer part, a0, and the reciprocal of another number, a ,1 0≔a a - then writing

1a as the sum of its integer part, a1, and the reciprocal of a ,2 1 1≔a a - and so on. This gives
the continued fraction representation of α:

a
a

a
a

1
1

1

.0

1

2
3

a = +
+

+
+ 

This iteration produces a sequence of integers a ,0⌊ ⌋a = a ,1 1⌊ ⌋a = a ,2 2⌊ ⌋a = etc. We
define inductively two sequences of integers pn{ } and qn{ } as follows:

p p p a p p0; 1; ; 4i i i i2 1 1 2 ( )= = = +- - - -

q q q a q q1, 0, . 5i i i i2 1 1 2 ( )= = = +- - - -

With this sequence we can approximate any irrational number α using the Hurwitz
theorem: for any irrational number, α, all the relative prime integers pn, qn of the sequences
defined in equations (4) and (5) satisfy

p

q q

1
. 6n

n n
2

( )a -

Figure 2. Cells covered by the classical algorithm, compared to the few steps required
by the efficient algorithm.
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3.2. Collision with a disc

The classical algorithm finds the intersection between a line, corresponding to the trajectory
of the particle, and a circle, corresponding to the circumference of the disc, by solving the
quadratic equation (2) for t .* A first improvement follows from observing that we may instead
look for the intersection of the trajectory with another line, as follows. In the following, we
take v 01 > and v 0;2 > by symmetry of the system, we can always rotate or reflect it such
that these conditions are satisfied.

We write the equation of the particle’s trajectory as y x b,a= + with slope v v ,2 1a =
and look for its intersection with the vertical line x=q passing through the disc at q p, .( ) As
shown in figure 3, if q b p r v ,1≔a d+ - < then a collision with the disc (q, p) will
occur. Due to the periodic boundary conditions, we can redefine b q b p≔ { }a + - where
{·} denotes the fractional part. Thus, b0 1,< < and we need only solve b .d<

We do not need to apply periodic boundary conditions at every step; rather, we only need
to check

q b 1 , 7n}∣{ ∣ ( )a d+ - <

where {·} denotes the fractional part, and q q 1,n n 1= +- where q1 is the x-coordinate of the
closest obstacle to the particle at t=0. Then, the first qn that satisfies this inequality will be q.
To calculate p, we use that either p q b⌊ ⌋a= + or p q b 1.⌊ ⌋a= + +

Now, to simplify the algorithm further, consider the integer coordinates q p,n n( ) such that

q p b , 8n n∣ ∣ ( )a d- + <

and for any pair of numbers (i, j) such that i q ,n< then i j b ,a d- + > q q ,n= and
p p .n=

Figure 3. Relation between the intersection of a line and a circle with integer
coordinates and the intersection of the line x=q.
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But q p bi ia - + are the distances between the integer coordinates q p,i i( ) and the point
q q b, .i i( )a + Thus, we would like a sequence such that

q p b q p b 9i i i i1 1∣ ∣ ∣ ∣ ( )a a- + < - +- -

for every integer i 1.> Also, the first pair of integer coordinates q0 and p0 should be 0, 0( ) or
0, 1 ,( ) minimizing q p b ,0 0a - + that is

q p b f b
b b

b b

, if
1

2

1 , if
1

2
.

101 1∣ ∣ ( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

a - + < =
<

- >

Note that if b 1 2,< we have p q b q ,n n n
⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦a a= + = if b q q 1,n n

⎢⎣ ⎥⎦a a+ - < and

p q 1,n n
⎢⎣ ⎥⎦a= + if b q q 1.n n

⎢⎣ ⎥⎦a a+ - > Whereas if b 1 2,> we have pn =
q b q1 1,n n

⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦a a+ + = + if b q q 1n n
⎢⎣ ⎥⎦a a+ - < and p q 2,n n

⎢⎣ ⎥⎦a= + if b qna+ -
q 1.n

⎢⎣ ⎥⎦a > Substituting these four cases in the two cases of equation (10), we obtain that
indeed p q 1.1 1

⎢⎣ ⎥⎦a= + Iterating the inequality (9) we obtain

p q 1. 11n n ( )⎢⎣ ⎥⎦a= +

Combining the inequality (8) with equation (11), we obtain again equation (7).
Thus, we have reduced the solution from two linear equations and one quadratic to one

linear equation. Furthermore, now we do not check in every periodic cell, because if 1,a >
for every qn we advance q qn n 1( )⌊ ⌋ ⌊ ⌋a a- - cells. And we do not need to apply periodic
boundary conditions until we reach the obstacle.

3.3. The Diophantine inequality: ∣αp−q ∣� δ

Now, a better algorithm should find a way to find the set of qi, such that inequality (9) holds
for every i, and there is no integer q such that q q qi i 1< < - for some i and

q b q b q b1 1 1 .i i 1{ } { } { }a a a+ - < + - < + --
In order to do this, we can use the continued fraction algorithm to obtain solutions to the

inequality q p .a d- This algorithm already gives a sequence of q p,n n( ) such that
q p q pi i i i1 1a a- < -- - if q q .i i1 <- In addition, the convergents of the continued frac-

tions provide best approximants and hence the smallest solution of the inequality (10). So, if
we turn our inequality (10) into this other inequality, we will find our algorithm just by using
the continued fraction algorithm. Indeed, using equation (11) and the inequality (10), we
obtain q b1 21{ }a - < if b 1 2< or b2 1( )< - if b 1 2,> which is almost the con-
tinued fraction inequality, except that p1 is always equal to q 1.1

⎢⎣ ⎥⎦a +

q p
b b

b b

2 , if
1

2
,

2 1 , if
1

2
.

12∣ ∣
( )

( )

⎧
⎨
⎪⎪

⎩
⎪⎪

a - <
<

- >

Now we can apply the continued fraction algorithm to obtain p1 and q1 of inequality (12).
If q b1a d+ < or q b1 ,1a d- + < then we have found the center of the obstacle at p q, ,1 1( )
with p q 1;1 1

⎢⎣ ⎥⎦a= + otherwise, we have not found it, but we know that if the center of
collision is at (p, q) then p p ,1 and q q .1 Hence, we can just use q p,1 1( ) even if they do
not satisfy inequality (9). Redefining bi as b b,0 = b q b ,i i{ }a= + we can calculate a suc-
cession of p q, .i i( ) If bn d< the algorithm stops, and the collision will take place with the
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obstacle centred at the coordinates q p, .n n( ) Otherwise, if b b,n = then the particle has a
rational slope equal to that of a channel, and so is travelling along and parallel to that channel,
and hence will never undergo another collision with an obstacle. In this case, the algorithm
throws an exception.

3.4. Complete 2D algorithm

We now have the necessary tools to implement the algorithm. Pseudo-code for the complete
efficient 2D algorithm is given in the appendix; source code for our implementation, written
in the Julia programming language [32, 33], may be found in the supplementary information.

The functions described above work only for velocities in the first octant, i.e. such that
v v0 .2 1< < If the velocity does not satisfy this condition, we use the symmetry of the

system, applying rotations and reflections and then, after obtaining the coordinates of the
collision, use the inverse transformations to return to the original system; see the appendix for
details.

Finally, to calculate the exact collision point, we use the classical algorithm to obtain the
intersection between a line and a circle, and from there the resulting post-collision velocity.

4. Efficient 3D algorithm

We now develop an efficient algorithm for calculating the next collision with a sphere in 3D
on a simple cubic lattice, which again is designed to be efficient for a small radius r. The
algorithm works by projecting the geometry onto the 2D coordinate planes and then using the
above efficient 2D algorithm in each plane, as follows.

Suppose we project a particle trajectory in a 3D lattice onto one of the x−y, x−z or y−z
planes. We will obtain a periodic square lattice with a 2D trajectory. This trajectory is not a
trajectory of the 2D Lorentz gas, however—it may pass through certain discs as if they were
not there, and may have non-elastic reflections with other discs. Furthermore, the speed
varies.

However, we will use this to apply the 2D algorithm for the projections in each plane, in
order to obtain coordinates of a disc in each of the three planes at which the first collision in
that plane is predicted to occur. We now check whether the obstacle coordinates in these
projections correspond to the same 3D obstacle, i.e. if the coordinates coincide pairwise. If
not, then we have not found a true collision in 3D. We move the particle to the cell containing
the obstacle that is furthest away, i.e., has the maximum collision time in its respective plane,
and continue.

If the obstacle coordinates do coincide pairwise, then this algorithm predicts that there is
a collision. However, this may not be true, due to the geometry, as follows. Calculating a
collision with a disc in one of the planes x−y, x−z or y−z is equivalent to calculating a
collision in space with a cylinder orthogonal to that plane. Joining these coordinates together
means calculating a collision with the intersection of three orthogonal cylinders with the same
radius. Figure 4 shows such an intersection of three cylinders, called a tricylinder or Stein-
metz solid [34], together with a sphere of the same radius. The sphere is contained inside the
intersection of the cylinders, and has a smaller volume.

Thus the algorithm may predict a false collision—with the tricylinder—even though the
particle does not collide with the sphere. To control this, we check if the particle really does
collide with this obstacle by using the classical algorithm; if so, then we have found a true
collision, and if not, we move the particle to the next cell and continue applying the algo-
rithm. Numerically, we find the probability of a false collision to be around 0.17.
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Pseudo-code for the efficient 3D algorithm is given in the appendix.

5. Numerical measurements

5.1. Execution time

In order to test the efficiency of our algorithms, we measure the average execution time of the
function that finds the first collision, starting from an initial point near the origin, as a function
of obstacle radius, for both the classical and efficient algorithms, in 2D and 3D.

Figure 4. A sphere of radius r embedded into the intersection of three orthogonal
cylinders of the same radius. The volume inside the intersection but outside the sphere
is the region where the 3D algorithm predicts false collisions.

Figure 5. Mean execution time to find the first collision in the 2D square Lorentz gas,
for the classical (dotted curve) and efficient (solid curve) algorithms. The straight lines
show power-law fits.
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Figures 5 and 6 show the results for the 2D and 3D algorithms, respectively. We per-
formed power-law fits for the execution time as a function of obstacle radius. For the 2D case,
we find an exponent of −1.01 for the classical algorithm and −0.20 for the efficient algo-
rithm. For the 3D case, the exponents are −2.25 and −1.20 for classical and efficient,
respectively. As we can see, our algorithms are increasingly more efficient for r 0.01.<

Similarly, we calculated the execution time per cell as a function of the obstacle radius,
for both the 2D and 3D efficient algorithms, with comparison to the corresponding classical
algorithms; see figures 7 and 8. Since the classical algorithms use periodic boundary con-
ditions, the time per cell is basically constant, independent of the obstacle radius. For small
radii, we again observe the efficiency of the new algorithms.

Figure 6.Mean execution time to find the first collision in the 3D simple cubic Lorentz
gas, for the classical (dotted curve) and efficient (solid curve) algorithms. The straight
lines show power-law fits.

Figure 7.Mean execution time per cell to find the first collision in a 2D square Lorentz
gas, for the classical (dashed curve) and efficient (solid curve) algorithms, as a function
of disc radius, r.
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5.2. Asymptotic complexity of the classical and efficient algorithms

The scaling of the complexity of the classical algorithm as r1 may be explained as follows.
The distance that a particle travels before it collides with an obstacle, i.e.the free path length,
is a function of obstacle size: the smaller the obstacles, the longer the free paths.

In periodic Lorentz gases, there is a simple formula for the mean free path between
consecutive collisions, τ, that arises from geometrical considerations [35]: it is, up to a
dimension-dependent constant, the ratio of the volume of the available space outside the
obstacles to the surface area of the obstacles. For the square 2D Lorentz gas with discs of
radius r, we have

r
r

r

1

2
, 13

2
( ) ( )t

p
=

-

with asymptotics r 1- for small r. Since the classical algorithm must cross this distance at
speed 1, it takes time proportional to r1 , as we find numerically. In applying this algorithm,
approximately r1 quadratic equations and four times as many linear equations must be
solved.

For the simple cubic Lorentz gas in 3D with spheres of radius r, we have

r
r

r

1
, 14

4
3

3

2
( ) ( )t

p

p
=

-

with asymptotics r ,2- which is not far from our numerical results.
On the other hand, the efficient algorithm checks only one quadratic equation, and

around r2 1 2- linear equations, giving an upper bound of r 1 2- for the complexity. (This
calculation uses Hurwitz’s theorem.) Numerically, it turns out to be significantly more effi-
cient than that.

5.3. Free flight distribution

As an example application of our algorithm, we measure the distribution of free flight lengths
for the first collision for certain systems studied by Marklof and Strömbergsson [27]. They
studied N incommensurable, overlapping periodic Lorentz gases in the Boltzmann–Grad

Figure 8.Mean execution time per cell to find the first collision in the 3D cubic Lorentz
gas, for the classical (dashed curve) and efficient (solid curve) algorithms, as a function
of sphere radius, r.
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limit, r 0, and proved that the asymptotic decay of the probability density for free flights in
that system is ℓ .N 2~ - - It follows that the asymptotic density of the first free flight should be

ℓ ℓ .N 1( )r ~ - -

Figure 9 shows our numerical results for this distribution in the case of two and three
overlapping lattices, compared to the asymptotic decay given by the rigorous result of [27].
To obtain this plot, we fixed the radius as r 10 4= - and calculated free flights for a given
initial condition for a 2D lattice, and for the same lattice rotated by 5p and 7,p respectively.
The first free flight for each lattice is calculated separately, and the minimum of those results
is then taken to give the first free flight for the superposition of either two or three incom-
mensurable lattices. The distributions obtained numerically do indeed follow the power laws
predicted. Naturally, it becomes increasingly difficult to obtain the asymptotic behaviour of
the densities as the number of lattices increases.

6. Extension to general periodic lattices

So far, we have restricted attention to spherical obstacles on simple cubic lattices. In this
section, we will show how to deal with arbitrary periodic crystal lattices. Such lattices consist
of a basis (finite collection) of different spheres (atoms), in unit cells of a Bravais lattice; see,
e.g., [36].

This may be considered as the superposition of distinct Bravais lattices, one for each of
the distinct atoms in the basis. Thus the efficient algorithm may be used separately for each
such lattice, and then we take the minimum time to determine the next collision. In this way,
we can now restrict attention to simulating a Bravais lattice with a single atom per unit cell.
For simplicity we will describe the method in 2D; the 3D case is similar.

A Bravais lattice in 2D is the set of points given by linear combinations of the form
a au u1 1 2 2+ of vectors ui defining the directions of the lattice, where the ai are integers. We

Figure 9. Probability density of the first free flight for two and three incommensurable,
overlapping periodic Lorentz gases with angles 5p and 7;p a total of 108 initial
conditions was used. The results for a single lattice are shown for comparison. The
dashed lines and labels show the theoretical asymptotics.
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pass from the square lattice to the oblique lattice by applying the transformation matrix ,soM
defined such that its columns are the vectors u :i

u u . 15so 1 2≔ ( ∣ ) ( )M

To transform back from the Bravais lattice to the square lattice, we apply the inverse
transformation .os so

1≔ -M M Starting from circular obstacles of radius r in the Bravais lattice
and applying osM gives one obstacle per unit cell at integer coordinates in the square lattice.
However, this stretches the shape of the resulting obstacles into ellipses, as follows from the
singular-value decomposition of ;osM see, e.g., [37]. The semi-major axis of the resulting
ellipses is r r ,1s¢ = where 1s is the first singular value of .osM We circumscribe the resulting
ellipse by a circular obstacle of radius r ,¢ giving a standard square periodic Lorentz gas,
suitable for analysis using the corresponding efficient 2D algorithm; see figure 10.

Starting from a given initial condition x ,0 v0 in the Bravais lattice we wish to simulate, we
transform these to x x0 os 0≔ ·¢ M and v v0 os 0≔ ·¢ M in the square lattice. We then apply the
efficient algorithm in the square lattice to obtain a proposed disc or sphere with integer
coordinates n. These coordinates are mapped to the oblique lattice, giving a proposed disc or
sphere with coordinates n n.so≔ ·¢ M We must check, however, if this is a true collision with
the obstacle at n¢ using the classical algorithm, since the proposed collision with a disc in the
square lattice may not actually hit the true elliptical obstacle there. If it is not a true collision,
then we move to the next cell and continue; if it is a true collision, we calculate the new post-
collision velocity.

Provided the transformation soM does not stretch the obstacles too much, and the radius is
small, this algorithm will still be very efficient.

Finally, non-spherical obstacles may be dealt with in a similar way, using a circum-
scribed circular or spherical obstacle. In this way, we may simulate completely general crystal
lattice structures.

7. Conclusions

We have introduced efficient algorithms to simulate periodic Lorentz gases in two and three
dimensions, that work particularly well when the obstacles are small. We have compared the
efficiency of these algorithms with the standard ones, showing that the relative efficiency
indeed increases very fast in 2D and fast in 3D, and we have shown a sample application to
calculate free flight distributions near the Boltzmann–Grad limit.

We have also shown how to extend our methods to arbitrary crystal lattices. The
extension of the 3D algorithm to higher dimensions and applications are in progress.

Figure 10. Effect of applying the transformation osM to an oblique lattice of discs (left).
The result is a square lattice of ellipses; circumscribed circles are also shown (right).
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Appendix A. Pseudo-code for the 2D efficient algorithm

Here we give pseudo-code for the efficient algorithm for simulating the 2D periodic Lorentz
gas with small circular obstacles on a square lattice.

A.1. Continued fractions

The continued fraction algorithm (algorithm 1) calculates the smallest integers kn and hn such

that .k

h
n

n
a d- <

Algorithm 1. Continued fraction algorithm

function RATIONAL_APPROXIMATION(α, δ)

h h, 1, 01 2 =
k k, 0, 11 2 =
b a=
while k h1 1a d- > do

a b⌊ ⌋=
h h ah h h, ,1 2 1 2 1= +
k k ak k k, ,1 2 1 2 1= +
b b a1 ( )= -

end while
return k h,1 1

end function

A.2. First collision

Using the continued fraction algorithm, it is possible to efficiently calculate the center of the
first obstacle with which a particle collides. First suppose that the particle has initial position

b0,( ) with b0 1,< < and its trajectory has velocity vector v v,1 2( ) with v v0 .2 1< < Let
m v v2 1= be the slope of the trajectory, which thus satisfies m0 1.< < The function
EFFICIENT_DISC_COLLISION(m, b, r) calculates the first disc of radius r, located at integer
coordinates, with which such a trajectory collides; see algorithm 2. This is the main function
required to optimize the efficiency of simulations in periodic Lorentz gases.

Algorithm 2. Function efficient_disc_collision

function EFFICIENT_DISC_COLLISION(m, b, r)
kn=0
b b1 =

r m 12d = +
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(Continued.)

if b d< or b1( ) d- < then
if b 1

2
< then
q p, = RATIONAL_APPROXIMATION(m, b2 )

else
q p, = RATIONAL_APPROXIMATION(m, b2 1( )- )

end if
b mq bmod , 1( )= +
k k qn n= +

end if
while b d> and b1 d- > do

if b 1
2

< then
q p, = RATIONAL_APPROXIMATION(m, b2 )

else
q p, = RATIONAL_APPROXIMATION(m, b2 1( )- )

end if
b mq bmod , 1( )= +
k k qn n= +
if b b 01- = then

exception(“Particle is parallel to a channel with slope m”)
end if

end while
q kn=
p mq bROUND 1( )= + ▷y-component of equation y mx b1= + with x=q
return q p,( )

end function

A.3. Starting point for efficient algorithm via local step

At each step, we need to find the correct starting point for the efficient algorithm, by moving
the particle up to the first collision with a local disc or the next position of the form n b, ,( )
where n Î and b ,Î i.e. that corresponds to a position b0,( ) with b0 1< < under
periodic boundary conditions. The function LOCAL_STEP(x, v, r) (algorithm 3) finds the col-
lision with one of the 4 possible local discs shown in figure A1; if there is no collision with
any of these discs, then the particle is moved to the position n b1, ,( )+ where n is the integer
part of the x component of the initial position. A boolean output is also returned: 1 if there is a
collision with a disc, or 0 if not.

Algorithm 3. Function local_step

function LOCAL_STEP(x, v, r)
e 1, 01ˆ ( )= and e 0, 12ˆ ( )=
n x⌊ ⌋=
x x n= - ▷translate to unit square centered at ,1

2
1
2( )

t x v11 1 1( )= - ▷time to reach position b1, 1( )
b x t v1 2 1 2= +
t x v ;2 1 1= - ▷time (negative) to reach position b0, 2( )
b x t v2 2 2 2= +

r v1d = ▷impact parameter
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(Continued.)

if ex v 01( ˆ ) ·- < then
b1 ⟹d< return e n, 01ˆ + ▷collision with disc 1

end if
if x e v 02( ˆ ) ·- < then

b1 2 ⟹d- < return e n, 02ˆ + ▷collision with disc 2
end if
if e ex v 02 1( ˆ ˆ ) ·- - < then

b1 1 ⟹d- < return e e n, 01 2ˆ ˆ+ + ▷collision with disc 3
end if
if x e e v2 02 1( ˆ ˆ ) ·- - < then

b2 1 ⟹d- < return e e n2 , 01 2ˆ ˆ+ + ▷collision with disc 4
end if
return b n1, , 11( ) + ▷no collision with disc

end function

The function FIND_NEXT_DISC_FIRST_OCTANT(x, v, r) integrates the two previous functions
to find the next disc with which a particle collides, either local or remote. This function
assumes that the velocity v is in the first octant.

Figure A1. Possible outcomes of the function LOCAL_STEP. This function applies for
velocities such that v v0 ,2 1< < so that trajectories move to the right and have slope
m 1.< Different types of trajectories are represented by arrows. The red square
represents the possible positions after translation. There are 5 possible types of
collision: on one of the 4 labelled discs, or at b1, .1( )
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Algorithm 4. Calculate the first collision if the initial velocity is in the first octant

function FIND_NEXT_DISC_FIRST_OCTANT(x, v, r)
if rx xround( ) - < then ▷if inside obstacle

return xround( ) ▷then first collision is with same obstacle
end if
x ,¢ collided = LOCAL_STEP(x, v, r)
if collided 0= then ▷hit disc

return x¢
end if
m v v2 1=
b x1= ¢
b b b⌊ ⌋= -
c = EFFICIENT_DISC_COLLISION(m, b, r) ▷find disc hit
d 0,(= ROUND(b)) ▷translation to check distance with closest obstacle, i.e. obstacle at

position 0, bROUND( ( ))
x= ROUND(x¢) c d+ -
return x

end function

A.4. Transforming the velocity

For an arbitrary velocity, we transform the velocity to the first octant in order to use the above
results, using the function TRANSFORMATION, which calculates the necessary combination of
rotations and reflections to transform the velocity to the first octant. In an implementation,
these would be computed once only and stored in an array.

The function FIND_NEXT_DISC then applies the respective transformation to find the next
disc with which a particle with arbitrary velocity collides.

A.5. Complete simulation

Given the disc with which a collision occurs, whose centre is returned by FIND_NEXT_DISC, we
need to calculate the exact position of the collision, the intersection between the straight
trajectory and the disc circumference, as well as the final velocity after the collision, given by
a reflection with respect to the normal vector at the point of collision. The function COLLISION

(x, x ,c v, r) calculates the intersection between a disc of radius r, at a position c, with a line
with parametric equation t tx x v .( ) = + The function COLLISION_VELOCITY calculates the
velocity after a collision, if the collision takes place at position x, with an obstacle with centre
c, and initial velocity v. These two functions are identical to those in the classical algorithm.

Algorithm 5. Given initial position x, initial velocity v and radius r, finds the first collision
in a periodic Lorentz gas with circular obstacles of radius r

function OCTANT(v) ▷find octant of the velocity between 1 and 8
v1, v2 = v
θ = ATAN2(v2, v1) ▷arctan taking into account signs
if 0q < then

θ = 2q p+
end if
return 4⌈ ⌉q p

end function
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(Continued.)

function TRANSFORMATION(n) ▷transformation for octant n between 1 and 8

R 0 1
1 01 ⎜ ⎟

⎛
⎝

⎞
⎠=

-
▷rotation matrix clockwise by angle 2p

R 0 1
1 02 ⎜ ⎟

⎛
⎝

⎞
⎠= ▷reflection matrix x y y x, ,( ) ( )

if n is odd then
return R n

1
1 2( )-

▷rotate according to quadrant
else if n is even then

return R R n
2 1

2 2· ( )-
▷also reflect if in other octant

end if
end function
function FIND_NEXT_DISC(x, v, r)

n = OCTANT(v)
=T TRANSFORMATION(n) ▷transformation for the given octant

x x·= T
v v·= T
x = FIND_NEXT_DISC_FIRST_OCTANT(x, v, r)
return x1 ·-T

end function

Algorithm 6. Lorentz gas: given initial conditions x and v, the radius of the obstacles, and
the number of collisions (steps), calculates the complete trajectory

function COLLISION(x, c, v, r) ▷find collision time with given disc
B vx c v 2[( ) · ]= -
C r vx c 2 2 2[( ) ]= - -
if B C 02 - < then

return +¥ ▷no collision
end if
t B B C2= - - -
return t

end function
function POST_COLLISION_VELOCITY(x, c, v, r) ▷velocity after collision

rn x cˆ ( )= -
v v v n n2( · ˆ ) ˆ= -
v v v=  
return v

end function
function LORENTZGAS(x, v, r, steps)

for i=1: steps do
c = FIND_NEXT_DISC(x, v, r)
t = COLLISION(x, c, v, r)

tx x v= +
v = POST_COLLISION_VELOCITY(x, c, v, r)

end for
end function

Note that in the efficient algorithm, COLLISION is called only after it is known with which
disc the collision will occur, and thus is guaranteed to find a collision. However, the case
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where no collision occurs often occurs in the classical algorithm and in the efficient 3D
algorithm.

Appendix B. Pseudocode for the 3D efficient algorithm

The 3D version of the efficient algorithm calculates the 2D collisions in each of the 3
coordinate planes x–y, y–z and x–z. We project the velocity vector v onto each planes, and
normalize. Using the 2D efficient algorithm, we calculate the first disc collision in each plane
and the corresponding time required to reach the obstacle, and take the maximum of the three.
We check if the three collisions correspond to the same obstacle in 3D space. If not, we move
to the furthest obstacle and continue. Finally, if the three 2D collisions do correspond to the
same obstacle, we use the function COLLISION to check if the collision is a true collision with
the corresponding sphere.

Algorithm 7. Function Lorentz3D: Find the next collision with an obstacle in 3D

function LORENTZ3D( rx v, , )
i ≔P plane with normal vector eî (i 1, 2, 3= )

for i 1, 2, 3{ }Î do
for j 1, 2{ }Î do

k i
k i

k i

0 if
if

if
i jk jk

j k, 1

( )
⎧
⎨⎪
⎩⎪
d
d

=
=
<
>-

T

end for ▷ iT is the identity matrix without row i
end for ▷ iT projects to plane iP
while true do

for i 1, 2, 3{ }Î do
v vi i ·= T ▷2D projected velocity in plane iP
u v vi i i=   ▷normalized projected velocity

ci
i

i( )= ▷initialise coordinates of 3 distinct obstacles in plane
end for
while c c1 1 2 1( ) ( )¹ or c c1 2 3 1( ) ( )¹ or c c2 2 3 2( ) ( )¹ do

for i 1, 2, 3{ }Î do
x xi i ·= T ▷projected coordinates in plane iP
ci = LORENTZ2D(x ,i u ,i r) ▷disc hit in plane iP
t rc x vi i i i( )= - -    ▷approximate collision time in plane iP

end for
t t t tmax , ,max 1 2 3( )=
if t 0max < then ▷particle in 3 planes collides with obstacle nearest to particle

t r2 1 2max ( )= - ▷maximal distance that particle on boundary of sphere
needs to move back such that at least in 2 planes it is outside the obstacles

end if
t rx x v 2 1 2max( ( ) )= + - - ▷move close to the furthest of the 3 possible

cylinders
end while

t¢ = COLLISION(x, x ,[ ] r, v) ▷if obstacles coincide, calculate if true collision; return +
∞ if not

if t < ¥ then
break

end if
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(Continued.)

rx x v 1 2( )= + - ▷if no collision, move distance r1 2( )- forwards, such that the
collision candidate is left behind, but no other obstacle is crossed

end while
tx x v= + ¢

return x
end function

References

[1] Cvitanović P, Gaspard P and Schreiber T 1992 Investigation of the Lorentz gas in terms of
periodic orbits Chaos 2 85–90

[2] Latz A, Van Beijeren H and Dorfman J R 1997 Lyapunov spectrum and the conjugate pairing rule
for a thermostatted random Lorentz gas: kinetic theory Phys. Rev. Lett. 78 207

[3] Dellago C and Posch H A 1997 Lyapunov spectrum and the conjugate pairing rule for a
thermostatted random Lorentz gas: numerical simulations Phys. Rev. Lett. 78 211

[4] Beijeren H Van, Arnulf Latz and Dorfman J R 1998 Chaotic properties of dilute two-and three-
dimensional random Lorentz gases: equilibrium systems Phys. Rev. E 57 4077

[5] Kraemer Atahualpa S and David P Sanders 2013 Embedding quasicrystals in a periodic cell:
dynamics in quasiperiodic structures Phys. Rev. Lett. 111 125501

[6] Wennberg B 2012 Free path lengths in quasi crystals J. Stat. Phys. 147 981–90
[7] Bunimovich Leonid A and Sinai Ya G 1981 Statistical properties of Lorentz gas with periodic

configuration of scatterers Commun. Math. Phys. 78 479–97
[8] Bleher P M 1992 Statistical properties of two-dimensional periodic Lorentz gas with infinite

horizon J. Stat. Phys. 66 315–73
[9] Chernov N I 1994 Statistical properties of the periodic Lorentz gas. Multidimensional case J. Stat.

Phys. 74 11–53
[10] Gilbert T, Nguyen H C and Sanders D P 2011 Diffusive properties of persistent walks on cubic

lattices with application to periodic Lorentz gases J. Phys. A: Math. Theor. 44 065001
[11] Caglioti E and Golse F 2003 On the distribution of free path lengths for the periodic Lorentz gas

III Commun. Math. Phys. 236 199–221
[12] Golse F 2012 Recent results on the periodic Lorentz gas Nonlinear Partial Differential Equations

(Berlin: Springer) pp 39–99
[13] Boca F P and Zaharescu A 2007 The distribution of the free path lengths in the periodic two-

dimensional Lorentz gas in the small-scatterer limit Commun. Math. Phys. 269 425–71
[14] Golse F 2006 The periodic Lorentz gas in the Boltzmann–Grad limit Proc. ICM (Madrid, 2006)

vol 3, pp 183–20
[15] Caglioti E and Golse F 2008 The Boltzmann–Grad limit of the periodic Lorentz gas in two space

dimensions Comp. Rend. Math. 346 477–82
[16] Caglioti E and Golse F 2010 On the Boltzmann–Grad limit for the two dimensional periodic

Lorentz gas J. Stat. Phys. 141 264–317
[17] Golse F and Wennberg B 2000 On the distribution of free path lengths for the periodic Lorentz

gas: II ESAIM: Math. Modelling Numer. Anal. 34 1151–63
[18] Marklof J and Strömbergsson A 2008 Kinetic transport in the two-dimensional periodic Lorentz

gas Nonlinearity 21 1413
[19] Bourgain J, Golse F and Wennberg B 1998 On the distribution of free path lengths for the periodic

Lorentz gas Commun. Math. Phys. 190 491–508
[20] Gilbert T and Sanders D P 2009 Persistence effects in deterministic diffusion Phys. Rev. E 80

041121
[21] Marklof J and Strömbergsson A 2011 The periodic Lorentz gas in the Boltzmann-Grad limit:

asymptotic estimates Geom. Funct. Anal. 21 560–647
[22] Nándori P, Szász D and Varjú T 2014 Tail asymptotics of free path lengths for the periodic

Lorentz process: on Dettmannʼs geometric conjectures Commun. Math. Phys. 331 111–37
[23] Dettmann C P 2012 New horizons in multidimensional diffusion: the Lorentz gas and the Riemann

hypothesis J. Stat. Phys. 146 181–204
[24] Sanders D P 2005 Fine structure of distributions and central limit theorem in diffusive billiards

Phys. Rev. E 71 016220

J. Phys. A: Math. Theor. 49 (2016) 025001 A S Kraemer et al

19

http://dx.doi.org/10.1063/1.165902
http://dx.doi.org/10.1063/1.165902
http://dx.doi.org/10.1063/1.165902
http://dx.doi.org/10.1103/PhysRevLett.78.207
http://dx.doi.org/10.1103/PhysRevLett.78.211
http://dx.doi.org/10.1103/PhysRevE.57.4077
http://dx.doi.org/10.1103/PhysRevLett.111.125501
http://dx.doi.org/10.1007/s10955-012-0500-3
http://dx.doi.org/10.1007/s10955-012-0500-3
http://dx.doi.org/10.1007/s10955-012-0500-3
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1007/BF01060071
http://dx.doi.org/10.1007/BF01060071
http://dx.doi.org/10.1007/BF01060071
http://dx.doi.org/10.1007/BF02186805
http://dx.doi.org/10.1007/BF02186805
http://dx.doi.org/10.1007/BF02186805
http://dx.doi.org/10.1088/1751-8113/44/6/065001
http://dx.doi.org/10.1007/s00220-003-0825-5
http://dx.doi.org/10.1007/s00220-003-0825-5
http://dx.doi.org/10.1007/s00220-003-0825-5
http://dx.doi.org/10.1007/s00220-006-0137-7
http://dx.doi.org/10.1007/s00220-006-0137-7
http://dx.doi.org/10.1007/s00220-006-0137-7
http://dx.doi.org/10.1016/j.crma.2008.01.016
http://dx.doi.org/10.1016/j.crma.2008.01.016
http://dx.doi.org/10.1016/j.crma.2008.01.016
http://dx.doi.org/10.1007/s10955-010-0046-1
http://dx.doi.org/10.1007/s10955-010-0046-1
http://dx.doi.org/10.1007/s10955-010-0046-1
http://dx.doi.org/10.1051/m2an:2000121
http://dx.doi.org/10.1051/m2an:2000121
http://dx.doi.org/10.1051/m2an:2000121
http://dx.doi.org/10.1088/0951-7715/21/7/001
http://dx.doi.org/10.1007/s002200050249
http://dx.doi.org/10.1007/s002200050249
http://dx.doi.org/10.1007/s002200050249
http://dx.doi.org/10.1103/PhysRevE.80.041121
http://dx.doi.org/10.1103/PhysRevE.80.041121
http://dx.doi.org/10.1007/s00039-011-0116-9
http://dx.doi.org/10.1007/s00039-011-0116-9
http://dx.doi.org/10.1007/s00039-011-0116-9
http://dx.doi.org/10.1007/s00220-014-2086-x
http://dx.doi.org/10.1007/s00220-014-2086-x
http://dx.doi.org/10.1007/s00220-014-2086-x
http://dx.doi.org/10.1007/s10955-011-0397-2
http://dx.doi.org/10.1007/s10955-011-0397-2
http://dx.doi.org/10.1007/s10955-011-0397-2
http://dx.doi.org/10.1103/PhysRevE.71.016220


[25] Sanders D P 2008 Normal diffusion in crystal structures and higher-dimensional billiard models
with gaps Phys. Rev. E 78 060101

[26] Zacherl A, Geisel T, Nierwetberg J and Radons G 1986 Power spectra for anomalous diffusion in
the extended Sinai billiard Phys. Lett. A 114 317–21

[27] Marklof J and Strömbergsson A 2014 Power-law distributions for the free path length in Lorentz
gases J. Stat. Phys. 155 1072–86

[28] Khanin K, Dias J and Marklof J 2007 Multidimensional continued fractions, dynamical
renormalization and Kam theory Commun. Math. Phys. 270 197–231

[29] Lagarias J C 1994 Geodesic multidimensional continued fractions Proc. London Math. Soc. (3) 69
464–88

[30] Niven I, Zuckerman H S and Montgomery H L 2008 An Introduction to the Theory of Numbers
(New York: Wiley)

[31] Nogueira A 1995 The three-dimensional poincaré continued fraction algorithm Isr. J. Math. 90
373–401

[32] http://julialang.org/
[33] Bezanson J, Edelman A, Karpinski S and Shah V B 2014 Julia: A fresh approach to numerical

computing arXiv:1411.1607
[34] Moore M 1974 Symmetrical intersections of right circular cylinders Math. Gaz. 58 181–5
[35] Chernov N 1997 Entropy, Lyapunov exponents, and mean free path for billiards J. Stat. Phys. 88

1–29
[36] Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College)
[37] Trefethen L N and Bau D 1997 Numerical Linear Algebra (Philadelphia, PA: Society for

Industrial and Applied Mathematics)

J. Phys. A: Math. Theor. 49 (2016) 025001 A S Kraemer et al

20

http://dx.doi.org/10.1103/PhysRevE.78.060101
http://dx.doi.org/10.1016/0375-9601(86)90568-2
http://dx.doi.org/10.1016/0375-9601(86)90568-2
http://dx.doi.org/10.1016/0375-9601(86)90568-2
http://dx.doi.org/10.1007/s10955-014-0935-9
http://dx.doi.org/10.1007/s10955-014-0935-9
http://dx.doi.org/10.1007/s10955-014-0935-9
http://dx.doi.org/10.1007/s00220-006-0125-y
http://dx.doi.org/10.1007/s00220-006-0125-y
http://dx.doi.org/10.1007/s00220-006-0125-y
http://dx.doi.org/10.1112/plms/s3-69.3.464
http://dx.doi.org/10.1112/plms/s3-69.3.464
http://dx.doi.org/10.1112/plms/s3-69.3.464
http://dx.doi.org/10.1112/plms/s3-69.3.464
http://dx.doi.org/10.1007/BF02783221
http://dx.doi.org/10.1007/BF02783221
http://dx.doi.org/10.1007/BF02783221
http://dx.doi.org/10.1007/BF02783221
http://julialang.org/
http://arXiv.org/abs/1411.1607
http://dx.doi.org/10.2307/3615957
http://dx.doi.org/10.2307/3615957
http://dx.doi.org/10.2307/3615957
http://dx.doi.org/10.1007/BF02508462
http://dx.doi.org/10.1007/BF02508462
http://dx.doi.org/10.1007/BF02508462
http://dx.doi.org/10.1007/BF02508462

	1. Introduction
	2. Classical algorithm for the periodic Lorentz gas
	3. Efficient 2D algorithm
	3.1. Continued fraction algorithm: approximation of an irrational number by a rational
	3.2. Collision with a disc
	3.3. The Diophantine inequality: &#x02223;&#x003B1;p-q&#x02223;&znbsp;&x02A7D;&znbsp;&#x003B4;
	3.4. Complete 2D algorithm

	4. Efficient 3D algorithm
	5. Numerical measurements
	5.1. Execution time
	5.2. Asymptotic complexity of the classical and efficient algorithms
	5.3. Free flight distribution

	6. Extension to general periodic lattices
	7. Conclusions
	Acknowledgments
	Appendix A.
	A.1. Continued fractions
	A.2. First collision
	A.3. Starting point for efficient algorithm via local step
	A.4. Transforming the velocity
	A.5. Complete simulation

	Appendix B.
	References



