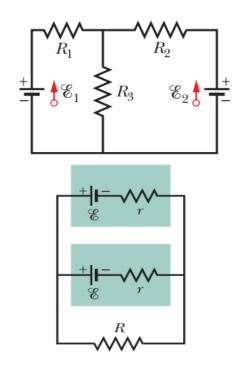
Tarea 6

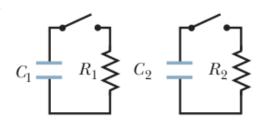

Circuitos eléctricos

Problema 1. (HR Cap. 27, prob. 30) 2 puntos

En la figura, las baterías tienen fem \mathcal{E}_1 y \mathcal{E}_2 y los tres resistores tienen resistencias R_1 , R_2 y R_3 . Determine las corrientes I_2 y I_3 por los resistores R_2 y R_3 .

Problema 2. (HR Cap. 27, prob. 39) 2 puntos

En la figura, las dos baterías iguales tienen fem \mathscr{E} y resistencia interna r y están conectadas a resistencia R. ¿Para cuál valor de R la potencia de disipación de energía sobre la resistencia R es máxima? ¿Cuál es esa potencia?



Problema 3. (HR Cap. 27, prob. 47) 2 puntos

Un cable de cobre de radio a = 0.25 mm tiene una envoltura de aluminio de radio externo b = 0.38 mm. Este cable compuesto tiene corriente I = 2 A. Calcule la corriente I_c en el cobre y I_a en el aluminio. Si la corriente se mantiene por la diferencia potencial $\Phi = 12$ V en los extremos del cable, ¿cuál es su longitud?

Problema 4. (HR Cap. 27, prob. 66) 2 puntos

Hay dos circuitos, cada uno con un condensador, un resistor y un interruptor. Los condensadores tienen capacitancias C_1 y C_2 , y los resistores tienen resistencias R_1 y R_2 . Al inicio, la proporción de las cargas iniciales en los condensadores #2 y #1 era $q_{02}/q_{01} = 3/2$. Los interruptores fueron cerrados al mismo tiempo. ¿Después de cuál tiempo t los dos condensadores tendrán la misma carga? ¿Cuál es la relación entre R_1 , R_2 , C_1 y C_2 tal que nunca tengan la misma carga al mismo tiempo?

Problema 5. (HR Cap. 27, prob. 79) 2 puntos

Un condensador no cargado con capacitancia C fue conectado con la batería de fem \mathscr{E} en serie con un resistor de resistencia R. 1) Demuestre que la energía final almacenada en el condensador es igual a 1/2 de la energía suministrada por la batería. 2) Por integrar la potencia disipada en el resistor por todo el tiempo, demuestre que la energía disipada en el resistor también es 1/2 de la energía suministrada por la batería.