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Department of Physics

QUALIFYING EXAMINATION

Wednesday, January 12, 2011
1:00PM to 3:00PM

Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 3 (QM), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 81
2
” × 11” paper (double-sided) you

have prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. The Dirac equation can be written in terms of two Pauli-type 2-component spinors, φ
and χ. For a free particle of mass m and momentum ~p, these are plane waves whose
spinor coefficients satisfy

mφ + ~p · ~σχ = Eφ , (1)

~p · ~σφ − mχ = Eχ , (2)

where E is the energy and ~σ = (σ1, σ2, σ3) are the Pauli matrices. We work in natural
units c = h̄ = 1.

(a) Solve Eqs. (1) and (2) for E and give a physical interpretation of every solution for
the given ~p.

(b) The scattering by a spin-independent central potential, V , between the initial and
final momenta ~p and ~p ′, is described in the Born approximation by the matrix
element

V (~p ′, ~p)
[
φ†~p ′φp + χ†~p ′χp

]
, (3)

where V (~p ′, ~p) is the matrix element of V between momentum eigenstates.
Using your solution to part (a), show that

χ†~p ′χp = φ†~p ′Σ(~p ′, ~p) φp , (4)

where Σ(~p ′, ~p) = F1(~p
′, ~p) + ~σ · ~F1(~p

′, ~p). Determine F1 and F2.

(c) Suppose that the electron is initially moving in the x3-direction, with its spin aligned
in the x3-direction, and that it is scattered by a very weak potential, V , into the
x2-direction. Show that, in the non-relativistic limit, the probability of spin flip in
the course of such a scattering event is small. Quantify what is meant by “small”
here.
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2. Two particles with masses m1 and m2 and coordinates x1 and x2 move on a circle of
radius R, 0 ≤ x1, x2 < 2πR.

(a) If the particles are non-interacting find the allowed energies and corresponding
energy eigenfunctions.

(b) Next a short range potential V (|x1−x2|) is introduced. The effects of the potential
V are described by a vanishing reflection coefficient R and a transmission coefficient
T = ei2δ. Find the new energy eigenvalues and eigenfunctions.
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3. Time-dependent and time-independent perturbation in a 1D Harmonic Oscillator.

Consider an isotropic one-dimensional harmonic oscillator where the unperturbed Hamil-
tonian is given by:

H̃0 =
p2

2m
+

mw2
0

2
x2

We now consider the effect of the perturbation Hamiltonian

H̃ ′ = λxf(t)

where λ is a constant, and f(t) is a time-dependent dimensionless function.

(a) Assume that the perturbation Hamiltonian is time-independent, i.e. f(t) = 1 for
all t. Find the energy shifts of the ground state to the first non-zero order in λ.

(b) Now, assume that the perturbation is time-dependent, such that

f(t) =

+∞∫
−∞

ρ (w) {eiwt + e−iwt}dw

where ρ =
√

1
πw2

0
e−(w−w0)2/w2

0 with the constant w0 given in the harmonic oscillator.

Assume that the oscillator is in its ground state at t = 0. What are the excited
states of this oscillator that the ground state can make a transition into?

(c) Find the transition rate into these excited states using Fermi’s golden rule.
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4. The wave function for the first excited state of the simple harmonic oscillator is:

U1(x) =
(mω

h̄

)3/4

√
2√
π

xe−
mωx2

2h̄

with E1 = 3
2
h̄ω. (The Hamiltonian is H = p2

2m
+ 1

2
mω2x2).

Suppose the wave function of a particle in the oscillator is:

U (x) =

{
cU1 (x) x < 0;
0 x > 0.

at t = 0.

i. What is c?

ii. What is the expectation value of the energy, 〈H〉, at t = 0?

iii. What is the probability P1 that the particle be found in the first excited state at
t = 0?

iv. How does P1 change with time?
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5. A particle is placed in a symmetric potential well of depth U and width a (such that the
well is in the range [−a

2
. . . a

2
]). The particle has only one bound state, with the binding

energy ε = U/2. calculate the probabilities of finding the particle in the classically-
allowed and classically-forbidden regions.

Note: The following integrals may be helpful:∫
sin2 (kx) dx =

x

2
− 1

4k
sin (2kx) + C; (5)

∫
cos2 (kx) dx =

x

2
+

1

4k
sin (2kx) + C. (6)
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N. Christ December 27, 2010

Quals Problem

1. Two particles with masses m1 and m2 and coordinates x1 and x2 move on a circle
of radius R.

(a) If the particles are non-interacting find the allowed energies and corresponding
energy eigenfunctions. [8 points]

(b) Next a short range potential V (|x1 − x2|) is introduced. The effects of the
potential V are described by a vanishing reflection coefficient R and a trans-
mission coefficient T = ei2δ (when particle 1 is moving in the +x direction).
Find the new energy eigenvalues and eigenfunctions. [12 points]

Suggested Solution

1. (a) For two independent particles we use the product of the single particle wave
functions with energy that is the sum of the single particle energies:

ψ(x1, x2) =
1

2πR
eipn1x1eipn2x2 (1)

En1 ,n2 =
p2

1

2m1

+
p2

2

2m2

(2)

where p1 = ni/R for i = 1, 2 and n1 and n2 are integers.

(b) When interactions are introduced such a two-particle probem can be simpli-
fied using relative (x) and center of mass (X) coordinates:

x = x2 − x1 (3)

X =
m1x1 +m2x2

m1 +m2

(4)

in terms of which the Hamiltonian becomes:

H =
P 2

2(m1 +m2)
+

p2

2mr
+ V (|x|) (5)

where P and p are conjugate to X and x respectively and the reduced mass
mr = m1m2/(m1 + m2). For infinite R, a complete set of energy and total
momentum eigenstates can be written:

ψ(x,X) = eiXP

{
eipx x < 0
e2iδeipx x > 0

}
. (6)

(Note: Here p can be postive or negative.)
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For finiteR we must require that the phase of the above wave function changes
by 2π times an integer when either x1 or x2 is increased by 2πR:

2πR(
m1

m1 +m2

P + p) + 2δ = 2πn1 (7)

2πR(
m2

m1 +m2
P − p) − 2δ = 2πn2 (8)

(9)

which gives the altered quantization conditions:

P =
n1 + n2

R
(10)

m1 −m2

m1 +m2
P + 2p =

2π(n1 − n2) − 4δ

2πR
(11)

or

P =
n1 + n2

R
(12)

p =
π(n1 − n2) − 2δ

2πR
− m1 −m2

m1 +m2
· n1 + n2

2R
(13)

2



Randy Torres
Typewritten Text
Sec 3 - # 3





Randy Torres
Typewritten Text
Sec 3 - # 4



MODERN PHYSICS – QUANTUM MECHANICS

Life in the forbidden region. SOLUTION.

In both forbidden regions the wave function decays as exp(−κ|x|), where h̄2κ2/2m =
ε. In the allowed region, the wave function oscillates as cos kx, where h̄2k2/2m =
U − ε. Since ε = U/2,

κ = k =

√
mU

h̄2 . (1)

With the symmetric x-coordinate choice, the matching of the wave function and
its derivative on the edge of the well (for example at x = a/2) gives

A cos
(
ka

2

)
= Be−ka/2, −Ak sin

(
ka

2

)
= −kBe−ka/2. (2)

The ratio of these equations yields

tan
(
ka

2

)
= 1 → ka =

π

2
. (3)

The probability for the particle to exist in the forbidden region is

Pout = 2
∫ ∞

a/2

dxB2e−2kx =
B2

k
e−ka. (4)

From matching conditions (2, 3) this is equivalent to

Pout =
A2

k
cos2

(
ka

2

)
=
A2

2k
. (5)

Analogously, the probability to exist in the allowed region is

Pin = 2
∫ a/2

0

dxA2 cos2(kx) =
A2

2k
[ka+ sin(ka)] =

A2

2k

(π
2

+ 1
)
. (6)

The ratio of the two probabilities is

Pout

Pin
=

2
2 + π

. (7)

Since Pout + Pin = 1, we obtain

Pout =
2

4 + π
' 0.28, Pin =

2 + π

4 + π
' 0.72. (8)
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