Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 13, 2010
3:10 PM - 5:10 PM

Applied QM and Special Relativity
Section 4.

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. Remember to hand in only
the 4 problems of your choice (if by mistake you hand in 5 problems, the highest
scoring problem grade will be dropped). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 4 (Applied QM and Special
Relativity), Question 2; Section 4 (Applied QM and Special Relativity), Question 6;
etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code.

You may refer to the single handwritten note sheet on 8 1/2x11” paper (double-sided)
you have prepared on Applied QM and Special Relativity. The note sheet cannot
leave the exam room once the exam has begun. This note sheet must be handed in at
the end of today’s exam. Please include your Exam Letter Code on your note sheet.
No other extraneous papers or books are premitted.

Simple calculators are permitted. However, the use of calculators for storing and /or
recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!
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1. The hole spectrum of GaAs at k = 0 is four-fold degenerate at k = 0 (I' point of the
Brillouin zone). In the vicinity of this point the spectrum is described by the Luttinger
Hamiltonian A

H=AKT+ Bk-J)?
where J zy,2 are matrices of angular momentum J = 3 /2 and I is the unit matrix.

(a) Find the eigenvalues c(k) of the Luttinger Hamiltonian.

(b) The Luttinger Hamiltonian is spherically symmetric but the crystal has a cubic sym-
metry. Generalize the Luttinger Hamiltonian so it would have a cubic symmetry.

(c) If the crystal is deformed, the degeneracy at the I' point can be partially lifted. What
is the minimal possible degeneracy of the spectrum at the I' point?
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2. Two identical superconductors are separated by a thin insulator and connected to a battery
whose DC voltage is given by V| as shown in the figure below. Let 9/, be the wave function
of the condensed superconducting electron pairs on one side of the superconductor and
be the wave function on the other side. The two wave functions are related to each other
by the time dependent Schrédinger equation in the following way:

e ‘
Zh§¢1—6v¢1+[(¢2 oot | x

0
ihsths = —eVhy + Ky , | g

Here, the constant K is a characteristic of
junctions, related to the tunneling process of \V;
the electron pairs across the insulator, and V il
is the voltage applied by the battery. ]

In this problem we express each wave function in terms of its corresponding condensation
density and the phase of the wave function: ¥4 = \/n_le“’1 and i, = \/77/_261:92, where n4
and n, are the densities, and #; and 8y are the phases of the condensate wave functions
of superconductor 1 and 2, respectively.

(a) Assuming n; and ngy are real, show that the current density of this junction is given
by
8n1 8712 -
J=——=——=Jpsino
ot at "

where § = 0, — #;. Find the expression for Jy in terms of K, ni, and n,.

(b) Assume that initially the condensation densities are equal and large, and that the
tunneling probability is small so that n;(¢) = na(t). Show that the current density
J derived in part (a) oscillates periodically over time. Find the frequency of the
oscillation in terms of the applied DC voltage V.
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3. A spinless particle of charge —e and mass m is constrained to move in the z-y plane. There
is a constant magnetic field B along the direction normal to the plane. Assume that the
field derives from a vector potential that has a single component along the z-direction
given by A, = —By.

(a) Write the expression for the Hamiltonian of one particle.

(b) To find the solutions of the Schrodinger equation for the stationary states, consider
wavefunctions

(z,y) = f(z)d(y)
where

f(z) = exp [(i/h)p.7]

and p, is the z-component of momentum.

Write the Schrodinger equation for ¢(y) and obtain the expression for the spectrum
of energy levels F,, (Landau levels) in the field B. What are the quantum numbers
that correspond to a Landau level?

(c) Assume that the area of the plane is given by the product of two lengths L, L,, that
are along the z- and y-directions. Also assume that the function f(z) satisfies the
‘obvious’ boundary condition

Find the degeneracy of a Landau level as a function of the magnetic field for L, =
L,=1L.
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with a constant velocity along the line of propagation of the wave. Using Maxwell’s
equations, determine the angular frequency of the reflected wave as seen by a stationary

|
|
l
|
4. A perpendicularly incident monochromatic plane wave is reflected from a mirror moving |
observer.
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5. In colliding beam detectors, K&, mesons can be detected through their decay to two
charged pions
thort - 7I'+7T_
Cylindrical gas trackers composed of many wires in an argon gas volume located inside
a solenoidal magnet can detect the ionization trail left by the pions and measure their

vector momenta.

The lifetime of the K3, is 0.89 x 107 s and the mass is 498 MeV. (The mass of the
charged pion is 140 MeV.)

For the following questions, assume that the energy of the K%, in the laboratory frame
of the detector is 60 GeV.

0

(a) What is the minimum opening angle in the lab frame of the two pions from the K%,

decay?
b) How far, on average, does the K o before decaying into two pions?
short &

(c) How far, on average, would the K. go before interacting with an argon atom in the
gas if the cross section for K+p or K+n interactions is about 20 millibarns (1barn =
1072 m?)? (The density of argon gas is 1.8 x 1073 g/cm®.)

(d) The Ky, has a lifetime of 5.17 x 107® s and a substantial fraction (38.7%) decay as

0 £+
Kiong — 7€ Ve

From this information, what branching fraction would you predict for the decay

0 + +
Kshort — e e
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The hole spectrum of GaAs at k = 0 is four-fold degenerate at £ = 0 (T point
of the Brillouin zone). In the vicinity of this point the spectrum is described by
the Luttinger Hamiltonian

H = AR?] + B(E. J)?

where J, ., are the matrices of angular momentum J = 3/2 and I is the unit
matrix.

1. Find the eigenvalues ¢(k) of the Luttinger Hamiltonian.

2. The Luttinger Hamiltonian is spherically symmetric and the crystal has a
cubic symmetry. Generalize the Luttinger Hamiltonian so it would have
a cubic symmetry as well.

3. If the crystal is deformed, the degeneracy at I point can be partially lifted.
What is the minimal possible degeneracy of the spectrum in I point?




Solution:
1. Choose direction of k as z-axis. Then

€(k; J. = £1/2) = k*(A + B/4); light holes

and
e(k; J. = £3/2) = k*(A 4+ 9B/4); heavy holes.

B = ART + B(E- J)? + C(K2J2 + K2J2 + k2.2)

3. As the electron has spin 1/2 and the time reversal symmetry is not broken
the minimal degeneracy in I-point is two because of the Kramers theorem.
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DC Josephson superconductor tunneling
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Two identical supercondutors are separated by a thin insulator and connected to a battery
whose DC voltage is given by ¥ as shown in the figure below. Let i, be the wave function
of the condensed superconducting electron pairs in one side of super conductor and v, be the

wave function of the other side. The two wave functions are related to each other by the time-
dependent Schrodinger equation in the following way:

.. 0
’hé?(m =eVy, + Ky,

ih%l//z =—eVy, + Ky,

Here, the constant X is a characteristic of junctions related
to the tunneling process of the electron pairs across the
insulator and V'is voltage applied by the battery outside.

In this problem we express each wav function in its corresponding condensation density and
the phase of wave function: y, = \/n,e"* and y, = \/n,e’® where n; and n, are the density of

condensate and & and 6 are the phase of the condensate wave functions of superconductor 1
and 2, respectively.

(a) Considering n; and n, are real, show that the current density of this junction defined is
given by
o _ o, =.J,sind
ot ot
where = & - 6. Find the expression of J; in terms of K and n; and n,.

J =

(b) We assume that initially the condensation densities are equal and large, and further
assume that the tunneling probability is small so that,n, ~n for all time.S how that the

current density J derived above oscillates periodically over time. Find the frequency of the
oscillation in terms of the applied DC voltage V.
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General-Section 4: applied quantum mechanics

A spin-less particle of charge —e and mass m is constrained to move in the X-y
plane. There is a constant magnetic field B along the direction normal to the
plane. Assume that the field derives from a vector potential that has a single
component along the x-direction given by A, = -By.

(a) write the expression for the Hamiltonian of one patrticle.

(b) to find the solutions of the Schroedinger equation for the stationary states
consider wavefunctions

w(x,y)= f(x)o(y)

where
f(x)= exp[(i/7)pxx]
and py is the x-component of momentum.

Write the Schroedinger equation for ¢(y) and obtain the expression for the
spectrum of energy levels E, (Landau levels) in the field B.
What are the quantum numbers that correspond to a Landau level?

(c) Assume that the area of the plane is given by the product of two lengths
L«Ly, that are along the x- and y-directions.
Also assume that the function f(x) satisfies the ‘obvious’ boundary
condition

f(x=0)=f(x=Ly)

Find the degeneracy of a Landau level as function of magnetic field for
Lx=Ly=L.




s
- £ i
S 1 5
EAREFo ;s
oo i s
AN .
PN
¢
T

Lt I T4

WL < o
Le s
oL
SO
T ; -
s - A
£ o Ve il
o A 52
. L 2 )
[y e LRI
. i
y o
-1 {
- o ! wl bea i
Eoow w2 f‘:'
g™ : —n
i
ju—
AN
7 = =T <
Lo ™ -
! . IR S -5 -
LR R o o P W oh :Q_A_,f - AL

e B
AR "y

UL
{
-
H iy £ F
- o, VL
2 oM™




Marka
Sec 4 L) e,
#5: A perpendicularly incident monochromatic plane wave is reflected from a

mirror moving with a constant velocity along the line of the propagation of the

wave. Using Maxwell's equations, determine the angular frequency of the reflected
wave as seen by a stationary observer.
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In colliding beam detectors, K o mesons can be detected through their decay to two
charged pions

KS, —>n'n
Cylindrical gas trackers composed of many wires in an argon gas volume located inside a
solenoidal magnet can detect the ionization trail left by the pions and measure their vector

momenta.

The lifetime of the K%por is 0.89x107'° s and the mass is 498 MeV. (The mass of a
charged pion is 140 MeV.)

For the following questions, assume that the energy of the K%por in the laboratory frame
of the detector is 60 GeV.

a) What is the minimum opening angle in the lab frame of the two pions from the Kpor
decay?

b) How far on average does the K o go before decaying into the pions?
¢) How far on average would a K%on go before interacting with an argon atom in the gas
if the cross section for K+p or K+n interactions is about 20 millibarns? (The density of

argon gas is 1.8 x 102 g/cm?.)

d) The Kolong has a lifetime of 5.17x10°® s and a substantial (38.7 %) decay fraction to

Ky, = eV,
From this information, what branching fraction would you predict for the
KS,, —> ey,
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