Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 13, 2010
1:00 PM - 3:00 PM

Quantum Mechanics
Section 3.

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. Remember to hand in only
the 4 problems of your choice (if by mistake you hand in 5 problems, the h1ghest
scoring problem grade will be dropped). Apportion your time carefully.

Use separate answer booklet(s) for each question. -Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 3 (Quantum Mechanics),
Question 2; Section 3 (Quantum Mechanics), Question 6; etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code.

You may refer to the single handwritten note sheet on 8 1 /2 x11” paper (double-sided)
you have prepared on Quantum Mechanics. The note sheet cannot leave the exam
room once the exam has begun. This note sheet must be handed in at the end of
today’s exam. Please include your Exam Letter Code on your note sheet. No other
extraneous papers or books are premitted.

Simple calculators are permitted. However, the use of calculators for storing and /or
recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!
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1. Two observers in different inertial frames will need different wave functions to describe
the same physical system. To make things simple, consider how it works in the non-
relativistic case. The first observer uses coordinates (Z,t) and a wave function ¥(Z,t),
while the second uses (Z',t) and ¥(Z’,t). Of course, £’ = & — ¥t where ¥ is a constant
velocity. The wave functions for the two observers are said to be related as follows:

D(Z',t) = Y(Z,t) exp (%l [mﬁ'- T — Tzlzt] )

Despite its innocuous look (it’s just a phase!) this transformation has interesting effects.

(a) Let us first verify that it makes sense. Suppose ¥(Z,t) is the wave function of a free
particle of momentum p = (p;, py,p.). Show that (&', t) indeed describes a free
particle with a proper momentum.

(b) Now let us put this to work. Suppose we have a hydrogen atom, which at ¢ < 0 was
at rest with the electron in the ground Is state described by the wave function

P(T) = Y10(Z) = \/i—ay exp (;—;) r = |Z]
B

where ap is the Bohr radius.

Suppose at t = 0 the proton suddenly starts to move (e.g., due to a collision with a
neutron) in the z-direction with the velocity v. Let the change in the velocity be so
abrupt that the electron wave function remains the same. What is the probability
at t > 0 to find the moving hydrogen atom with the electron in the ground state?

(c) What is the probability to find the electron in the state withn =2, =1,m =17
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2. (a) Prove that the expectation value of the Hamiltonian F [4] is stationary in the neigh-

borhood of a discrete eigenstate i.e., if HiYp, = Ep, and ¢ = Pn + 61, then
§(|H|) = 0. Show also that E[¢] > Eo, where Eo < Ey is the ground state
energy.

(b) Apply the above to estimate the quantum ground state energy of a simple harmonic
oscillator using a trial wave function of the form ¢(z) = exp(—z?/a?). Determine a,
and compare F [¢] to the exact Fy ground state energy.

(Useful integrals are [°_dx e~¥"%" = /7 /b and its derivative with respect to b.)
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3. Consider an electron of charge e and mass m confined on a ring of radius R. In cylindrical
coordinates the Hamiltonian of this confined system can be described by

1 [(h=\? B2 /1 d\?
HZ%(EV) “z—ns(m)'

where ¢ is the azimuthal angle.
(a) Find the energy eigenvalues and normalized eigenfunctions of this system.

(b) Now we consider a magnetic field B = B2 applied along the z-direction. Employ-
ing the “symmetric” gauge, the corresponding vector potential on the ring can be

expressed by

- BR -
A=m?

where qS is the unit vector along the azimuthal angle ¢. In the magnetic field, the
> -\ 2

Hamiltonian is given by H = ﬁ (%V — eA) . Find the energy eigenvalue of an

electron confined to this ring in the presence of a fixed magnetic field.

(¢) Find the smallest magnetic field for which one can find the non-degenerate ground
and doubly degenerate excited states.
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4. Consider a particle of mass m in a one-dimensional potential V() where

4
V(z) =00 r <0
V(z)=0 0<z<a
Viz) =W T >a
|
with V5 > 0.
a X —

(a) U E = %’f; is a bound state energy and Vo — F = %ﬁ, give the equation determining
possible values of E.

(b) Give the condition on Vo and a for at least one bound state to exist.

(c) What are the energy levels when V4 = 00?
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5. Consider a quantum system with an infinite set of particles in one dimension as shown
in the figure. Particles cannot cross neighbors. We are interested in the probability
distribution of spacings L between a particle and its neighbor to the left, given that the
average spacing between particles is Lg.

In the simplest approximation to this many-body problem, a single particle moves between
two fixed neighbors separated by 2Lg. Let # = L — Ly denote the deviation from the
midpoint.

(a) Find the probability distribution P(L) in the ground state, in the above approx-
imation, and assuming there are no interparticle interactions (other than contact
interactions).

(b) Now suppose there are strong repulsive potentials between pairs of neighboring par-
ticles of the form AL™". Considering only the nearest neighbors, write the potential
energy for the middle particle for x <« Ly. Write the result explicitly in terms of A,
n and Lg.

(c) Still assuming that < Lo and that the neighboring particles are fixed, write the
Schrodinger equation for the middle particle, and argue that the problem can be
mapped into a familiar one. Based on this analogy, what is the form of the distribu-
tion P(L)? How does its width scale with Lo?

(d) In the limit of strong repulsion, as in b) and c) above, explain how you can measure
the power n and the amplitude A that characterize the potential.
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Two observers in different inertial frames will need different wave functions to describe the

same physical system. To make things simple consider how it works in the non-relativistic case.
The first observer uses coordinates (¥,¢)and a wave function w(%,t), while the second uses

(%',¢)and 7(¥',¢). Of course, ¥' = ¥ — ¥ where 7 is a constant velocity. The wave functions for
the two observers are said to be related as follows:

. 2
G, 1) = (%, t)exp| —| mvi — 1t
h 2
Despite its innocuous look (it’s just a phase!) this transformation has interesting effects.

a) Let us first verify that it makes sense. Suppose t//()'c', t) is the wave function of a free particle
of momentum p = (px, P, pz). Show that t/7(5c",t)indeed describes a free particle with a
proper momentum.

Solution:
Wave function of the free particle of momentum p = (px, Dys pz) can be written as

. 2 . 2 2 2
. I| o p l px +py +pz
,t)=Cexp| —| pXx ———t||=Cexp| — + +pz—
w(%,1) p(h[px — D xp(h[pxx py+p.z -

where C is the normalization constant.

[ 2 2
oy il.. p I %
x',t)=Cexp| —| px —=—1t—mvx + t
v(E.1) a7 > D

Now we can substitute X = X' +v¢

l}/‘()'é', t) =Cexp

L

=Cexp

. 2 2
pE - vt) Lt + mv (% +\7t)~ﬂ—tD =
2m 2
L
\L

L
h
P% v’
(p-mv)% +1| py —E—+mv* -
2m 2 .
=Cexp d (p-mv i"—t—zlm—(pz—2mf)\7+m2v2)D=exp(_?i[(ﬁ——mﬁ)—-i};(p—mﬁ)z])

\7iL

One can see that the wave function in a new frame can be written as

- 2
ﬁ’.;é’ _ (p ) t

L 2m

where p’ = p —mv .is the momentum in the new frame. It is indeed the wave function of the free

particle in the new frame.

|~

1/7(55',1‘) = Cexp|




b) Now let us put this to work. Suppose we have a hydrogen atom, which at 7 <0 was at
rest with the electron in the ground Is state described by the wave function

e I
may ag

Suppose at ¢ = 0 the proton suddenly starts to move (e.g., due to a collision with a neutron) in the

z-direction with the velocity v. Let the change in the velocity be so abrupt that the electronic

wave function remained the same. What is the probability to find at # > 0 the moving hydrogen

atom with the electron in the ground state?

Solution:
As we learned the wave function of the electron at the new rest frame of the proton is

@(%',t) = exp -—i-mi)')'c'——n}it w, o (%,t)= ! exp -r 1 mvz—mvzt
n| 2 b [na? a, h 2

Therefore at t=0+ the electron wave function would be

w(x)= ! exp———r—imvz}
N7 [ a; 1
The ground state of the electron in the moving atom is described by the wave function

1 (—r’)
exp| —
\ma; ag

Note that ¥ = X’ at t=0. The probability P that the electron remains in the ground state is
2 1
P={y®)y,, G| = CXP[
I =y

Now we can use polar coordinates: momentum z = rcos6; d¥ = r’drd(cos 8)dy
- 2

I exp[— r(l - % mv cos 0) r*drd(cos 0)dy

az

‘//1,0(5‘") =

B

2
_Z_Lmvz]dy'
a h

i

Integrals over @ and over 6 can be evaluated straightforwardly. The result is

2 w , 7 2 2 2
P=—6ih—2—2 Imjexp —r 2 _imvr rdr | = 64h2 | Im ! >
azm’v ° a;, h azm*v (2/a, —imvr/h)

Integral I exp(— cr)rdr can be evaluated by parts: I exp(~ cr)rdr =1/c* . Therefore
0

2 «© . 2 2 2
P=——64hT Imjexp -7 i_zmvr rdr | = 64h2 5| Im L 5
agmv: | 3 ag h agm*v (2/a, —imvr/h)

c) What is the probability to find the electron in the state with n =2,/ =1,m=1?

Solution

This probability vanishes after the integration over the polar angle because y, ,, « e
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a) [10] Prove that the expectation value of the Hamiltonian E[¢)] is
stationary in the neighborhood of a discrete eigenstate, i.e., if Hy, =
E, vy, and 9 = 1, + 8%, then §(p|H|yp) = 0. Show also that E[¢] > Ey
where Ey < E,, is the ground state energy.

b) [10] Apply the above to estimate the quantum ground state energy
of a simple harmonic oscillator using a trial wavefunction
of the form (z) = exp (—z%/a?). Determine a, and compare E[¢] to the

exact Ey ground state energy. (Useful integrals are [ dze=t’" = /7 /b
and its derivative with respect to b)
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Electron confined in a ring with magnetic field.

Consider an electron of charge e and mass m confined in a ring of radius R. In a cylindrical
coordinate the Hamiltonian of this confined system can be described by
2 2
H= _I_(EV)Z __K(ld)
2m i 2m\ R dy

where ¢ is the azimuthal angle.

(a) Find the energy eigen values and normalized eigen wavefunctions of this system.

(b) Now we consider a magnetic field B = Bz applied to z-direction. Employing the

symmetry gauge, the corresponding vector potential on the ring can be expressed by

- BR.
A===p,
59

where ¢ is the unit vector along the azimuthal angle ¢ . In the magnetic field, the

Hamitonian is given by H = ZL(E'V —eA)?. Find the energy eigen value of a confined
m i

electron in this ring in the presence of a fixed magnetic field.

() Find the smallest magnetic field at which one can find the non-degenerate ground and

doubly degenerate excited states?
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Columbia Physics Department
2010 QUALIFYING EXAMS

All questions are to be scored on a scale of
0to 15
(0 = failing, 15 = highest possible score)

Please write the numerical score in red
ink directly on the cover of the exami
booklet.

Please be sure to read the problem as it appears in the exam.
Some problems have been edited. Make sure that you are
grading what the students were asked.

Please return the graded exam booklets to
Lalla or to Rasma in 704 Pupin, ideally
within 24 hours, or as soon as possible.

Thanks!
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1. Quantum mechanics

Consider a quantum system with an infinite set of particles in one dimension as shown
in the figure. Particles cannot cross neighbors. We are interested in the probability
distribution of spacings L between a particle and its neighbor to the left, given that the
average spacing between particles is L.

In the simplest approximation to this many-body problem, a single particle moves between
two fixed neighbors separated by 2L. Let £ = L — L denote the deviation from the
midpoint.

(a) Find the probability distribution P(L) in the ground state, in the above approx-
imation, and assuming there are no interparticle interactions (other than contact
interactions).

(b) Now suppose there are strong repulsive potentials between pairs of neighboring par-
ticles of the form AL™™. Considering only the nearest neighbors, write the potential
energy for the middle particle for x < L. Write the result explicitly in terms of A,
n and L.

(c) Still assuming that z < L and that the neighboring particles are fixed, write the
Schrodinger equation for the middle particle, and argue that the problem can be

mapped into a familiar one. Based on this analogy, what is the form of the distri-
bution P(L)? How does its width scale with L?

(d) In the limit of strong repulsion, as in b) and c) above, explain how you can measure
the power n and the amplitude A that characterize the potential.
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