Columbia University
Department of Physics
QUALIFYING EXAMINATION

Monday, January 11, 2010
1:00 PM - 3:00 PM

Classical Mechanics
Section 1.

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. Remember to hand in only
the 4 problems of your choice (if by mistake you hand in 5 problems, the highest
scoring problem grade will be dropped). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 1 (Classical Mechanics),
Question 2; Section 1 (Classical Mechanics), Question 6; etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code.

You may refer to the single handwritten note sheet on 8 1/2x11” paper (double-sided)
you have prepared on Classical Mechanics. The note sheet cannot leave the exam
room once the exam has begun. This note sheet must be handed in at the end of
today’s exam. Please include your Exam Letter Code on your note sheet. No other
extraneous papers or books are premitted.

Simple calculators are permitted. However, the use of calculators for storing and/or
recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.
Good luck!!
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1. A block of mass my slides inside a cavity of length L inside a second block of mass m,
which rests on a horizontal table. The masses m; and my are connected by a massless
spring with spring constant k& and equilibrium length | < L. Initially both blocks are at
rest and located at z; = 0 and zo = [ — Al where Al specifies the initial compression of
the spring.

m m

(3]

(a) If the mass m; slides without friction on the table and m, slides without friction on
the second block, find z;(t) and z5(¢) as a function of time.

(b) If the mass m, exerts a frictional force on my proportional to their relative velocity,
Fion2 = —0(Z9 — 21), again determine the resulting motion of the two masses.

(¢) If my slides on m, without friction but m, experiences a similar frictional force

from the table, F} = —o,, find the resulting complex frequencies to first order in
o assuming o to be small. What do those frequencies imply about the resulting
motion?
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2. Consider the general problem of N beads of mass m, that slide frictionlessly around
a fixed horizontal hoop. The beads are attached to, and spaced by, identical massless
springs whose natural length is much smaller than their equilibrium length. For any given
N, the spring constant is chosen such that in equilibrium the springs are under tension 7.
Answer the following:

(a) Suppose N = 2. For ¢ < 0 bead #1 is held fixed at a reference position, § = 0, and
bead #2 is held fixed at § = 7 + A where A <« 7. At ¢t = 0 the beads are released.
Find the subsequent motion of the two beads, i.e. 6;(t) and 62(¢).

(b) Suppose N is very large. The mass density of the beads on the hoop is p. Estimate
the two lowest frequencies for the normal modes of the system.

(c) Suppose N = 3. Find the frequencies and corresponding eigenvectors of the normal
modes of the system.
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3. A uniform ladder of mass M and length L is placed with one end against a frictionless
wall and the other end on a frictionless floor. The ladder initially makes an angle 6, with
the floor, as shown below.

The ladder is released, and slides under the influence of gravity.

(a) Write the Lagrangian for the sliding ladder as a function of 8 (the angle of the ladder
with respect to the floor).

(b) At what angle 6 does the ladder lose contact with the wall?

(Note: The moment of inertia of a uniform rod of mass M and length L rotating about
an axis through its center of mass is [ = ;M L?)
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4. A cylinder of radius R and mass m rolls up an inclined plane of angle § without slipping.
The inclined plane has mass M and is free to slide along the horizontal surface without
friction.

The cylinder has an initial velocity Vv, up the inclined plane, and the inclined plane is
initially at rest with respect to the horizontal surface.

(a) How high does the cylinder rise before it stops rotating and then starts to roll back
down the inclined plane (A in the diagram)?

(b) At this point, what is the horizontal velocity of the cylinder and inclined plane (\7
in the diagram)?

Give your answers in terms of I, R, m, M, 0, g, and vy.
Y

mcylindct = 0

Section 1 50f 6




5. Consider two identical billiard balls (spheres), each of mass M and radius R. One is
stationary (ball 2) and the other rolls on a horizontal surface without slipping, with a
horizontal speed v (ball 1), as shown.

ball 1 ball 2

Assume that all the frictional forces are small enough so as to be negligible over the time
of the collision, and that the collision is completely elastic.

(a) Calculate the moment of inertia of one of the billiard balls about its center.

(b) What is the final velocity of each ball a long time after the collision? i.e. when each
ball is rolling without slipping once more.

(¢) What fraction of the initial energy is transformed into heat?
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Quals Problems

1. A block of mass ms slides inside a cavity of length L in a second block of mass m; which
rests on a horizontal table. The masses m; and mq are connected by a massless spring
with spring constant k and equilibrium length [ < L. Initially both blocks are at rest
and located at z; = 0 and z3 = [ — Al where Al specifies the initial compression of the
spring.

)

(a) If the mass m; slides without friction on the table and my slides without friction on
the second block find z;1(¢) and z2(t) as a function of time.

(b) If the m; exerts a frictional force on my proportional to their relative velocity,
Fion2 = —0(Z2 — 1), again determine the resulting motion.

(c) If my slides on m; without friction but m; experiences a similar frictional force
from the table, F; = —o%;, find the resulting complex frequencies to first order in
o assuming o to be small. What do those frequencies imply about the resulting
motion?




(a)

(b)

Suggested Solution
Start with equations of z; and z5:

mlil = —k(fl?l — T2 + l)

m2i‘2 = ~k(:L‘2 — 1 — l)

The sum of these equations describe the free particle motion of the center of mass
variable Tem = (max1 4+ maz2)/(my + my):

Tem =0

If the first equation is multiplied by m9y and subtracted from the second multiplied
by m;, we find a simple harmonic equation for the variable y = x5 — 1 — [:

mimay = —(my + ma)ky (1)

Thus, if we define wy = 1/k/u with g = myms/(m1 + ma) we have the solution:

y(t) = —Alcos(wot)
T mg(l — Al)
cm T my+ ma

The extra friction force does not change the structure of the equations:
miZ1 = —k(z1—z2+1) — o2y — &)
mois = —k(z2—x1 1) —o(d2 — Z1)
so they are solved the same variables z., and y:
y(t) = e M2Al {—- cos(wt) + % sin(wt)}

mz(l - Al)
my+me

where v = o/p and w = /wg — 72/4.

Tem =




(c) The equations become less familiar if friction is introduced between the table and

ms:

mldc'l = —k(.’):l -~ I+ l) - 0’.’i?1

mzflfg = —k(.Tz — 1 — l)

Now the center of mass motion will couple with the oscillating variables and the
four frequencies present in this system of two coupled second order equations can be
found by solving:

2 .
_ —mw* + k + iow -k
0 = det ( -k —mow?® + k >

= mimaw* — (m; + mo)kw? + iow(k — mow?).

If o = 0, these have the double root w = 0 and the two roots w = +wjy corresponding
to the zcm(0) + £om(0)t cm mass and oscillatory motion above. These zeroth-order
results can then be substituted in the above equation to find the frequencies to first
order in o:

. ma2
w = twy+ic—7————
ml(m1+m2)
. a
w =0, w=4+i—.
mi -+ My

The w = 0 root corresponds to equilibrium with an arbitrary cm location, while
io /(m1+mg) describes non-oscillatory behavior with non-zero cm velocity, decreasing
exponentially to zero. Finally wp + ioma/(mi[m; +ms]) corresponds to oscillatory
motion damped by the motion of m;.
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N Beads on a hoop - solutions

The displacement of bead with index i from its equilibrium position will be written &;. Since the
net force on a bead is zero with all of the beads at their equilibrium positions we can write the
equations of motion purely in terms of the displacements £.

a. The spring constant k can be expressed in terms of the tension using T = 2n Rk or
k =T/2nR. The equations of motion for the two beads can be written

mR 51 = kR(&—~ &) —kR(& — &) =2kR(& — &)
mR& = kR(&G — &) —kR (& — &) =2kR (6 — &)

If we add and subtract the two equations of motion we obtain,
mR(&+&) = 0.
mR (&~ &) = 4kR(& - &)
If we define £, = & + & and &; = & — & and simplify we obtain the two equations
& = 0

£ = 4(%)@1

The first equation which describes the first normal mode of the system and has the solution
&s = &o + ws t, describes the simultaneous motion of the beads around the circle at constant
separation. The second equation which describes the second n normal mode corresponds to

simple harmonic oscillation of the &, coordinate with frequency wy = 2,/k /m. We can write
the general solution of that equation, £; = Acoswy t + Bsinw, t. We can obtain the
constants &g, ws, A, and B from the initial conditions. we have

L&(E=0) = &=601t=0)+&(E=0)=A/2
Cat=0) = A=§2(t=0)—§}(t=0)=A/2
Et=0) = w,=&(t=0)+&(E=0)=0

£at=0) = Bug=6&t=0)—&(t=0)=0

Or more succinctly, § = A, A= A, w, = 0, B = 0. Now we express & and & in terms of &,

and &g, . .
&= 5 (s —&a), &2 = 5 (& + &)
with the results for &(¢) and &(t),
&) = % [1 - cos (wq t)]

&) = % [1 + cos (wq t)]




b. In the large-N limit the system can be thought of as effectively continuous with a wave
equation for the angle-dependent displacement from equilibrium, £(8, ¢),

0% _ v 0%
ot~ R o0

The phase velocity can be found purely through dimensional analysis — the only combination
of constants in the problem that have the correct dimensions for v? is v2 = T'/u (similar to
waves on a string). We can write the general standing wave solution

&(0,t) = Asin (kRO — ) cos (wt — ¢)

where a and ¢ are spatial and temporal phase angles respectively. As usual w/k = v. Now,
waves that propagate on the hoop must satisfy the periodicity condition £(6 + 27, t) = £(6, t).
Thus, we are restricted to solutions where 27kR = n2m or kR = n where n is an integer.
Thus yields values for k, k = 1/R,2/R, .... However, as with the N = 2 case in part a, there
is a solution corresponding to no oscillation where the beads simply move around the loop at
constant angular velocity. The solution corresponds to w = 0. So, strictly speaking the two
lowest frequencies of motion of the systemn have w = 0 and w = v/R.

¢. The equations of motion take the form

. k

&= - (26 — &1 — &1€) = Wi (26 — &1 — €1 §)
with i cyclic: ¢ =0 — ¢ = 3and ¢ =4 — ¢ = 1. hewre we have defined with wy = \/k/m. If
we assume the existence of normal mode solutions to the motion of the form
U = Acos (wt — ¢) with & = C;U and substitute into the equations of motion we obtain an
eigenvalue equation

w? — 2w w3 wh C -2 1 1 Cy
wa w? — 2w wa Co | =uf 1 r2—2 r? Cy | =0
wp wi w? — 2w Cs 1 1 r?-2 Cs

r = w/wo. Applying the usual requirement on the determinant (zero)

r2 —2 1 1
Det 1 r?2—2 1 =0
1 1 r? -2

we obtain the characteristic equation
(r* - 2) ((7‘2-2>2—-1) —(P-2-1)+(1-(*-2)) =0
Simplifying, we can write the characteristics equation
(" -2)°-3(*-2)+2=0
Expanding out all the terms and cancelling where appropriate we obtain

rS—6rt+or2 =1 (r? —3)" =0




with the solutions 72 = 0 and (degenerate) r? = 3 (taking only the positive root for solutions
to normal mode motion. The r* = 0 solution corresponds to no oscillation. The resulting
equation(s) for the (unnormalized) eigenvector taking Cy =1 are

Cz+03=2,—202+03—_—'—1

which give as solutions, C; = 1 and C; = 1 for a normalized eigenvector,

C=\/§[1 1 1]

Clearly this solution corresponds to the simultaneous motion of the beads around the hoop.
Now consider the degenerate solution r* = 3 which means w = V3wg. We obtain a redundant
equation for the eigenvectors, C1 + C2 + Cs = 0. The redundancy (due to the degeneracy
which, in turn results from the symmetry of the problem under cyclic permutation of the
indices) means that we have freedom in choosing the remaining two eigenvectors as long as
they are orthogonal. One valid choice based on intuition about how normal modes work is to
have one bead fixed and the others to oscillate with opposite phase, namely

C=£[1 -1 0]

Giving a final eigenvector

Q
il
|
—
—

!
D=
|
[
[a—
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A uniform ladder of mass M and length L is placed with one end against a frictionless wall and the other
end on a frictionless floor. The ladder initially makes an angle 0, with the floor, as shown below.

The ladder is released, and slides, under the influence of gravity.

a). Write the Lagrangian for the sliding ladder as a function of 6 (the angle of the ladder with respect to
the floor).

b). At what angle 0 does the ladder lose contact with the wall?

(The moment of inertia of a uniform rod of mass M and length L rotating about an axis through its
center of massis | = fz-MLZ.)

Solution:

a). Denoting the center of mass coordinates of the ladder by (Xcm.Ycm), then the Lagrangian is:
L=T-V

where:

1 1
T = EM(XEM + yéu) + EICMGZ




. 1 , . 2.
with Iey = =ML?, and (k% + 73,) = (g) 62, so:

1 /IN? .. 141 o1
T=—-M(~) 2 _(__ 2) 2 _ 1,242
SM(5) 6 +5 M )6 SML%6

and:
Ly .
V=Mg (—2—) sing
so the Lagrangian can be written:

1.1
L =g MI*6? ~ > MgLsing

b). The equation of motion, via the Lagrange equation:

d(ﬂL) aL_
dt\ag) a6

1 . 1
§ML29 +—2-MgLC039 =0

! L + k =0
3 5 gcosf =
As the ladder slides, energy £ is conserved, where:
1 . 1 .

E=T+V= EMLZB2 + EMgLsmB

and we know the total energy from the initial condition {with no velocity), viz.;
1 .
Ey = -Z—MgLsmﬂo

giving:

1 R 1 :
—(;MLZG2 = EMgL(sinBO — sinf)

1

3 L2 = g(sinB, — sind)




Writing the center of mass coordinates in terms of £ and 6: xppy = G;—) cos8, and ypp = G) sinf, and

looking at horizontal forces, gives:

) Ly, . i
Ny =Micy =M (-2—) (—8%cose — Gsind)

At the point at which the ladder breaks contact with the wall, Ny, = 0, and so:

—8%c0s8 — fsin® = 0

G = —02cotl
Substituting in the equation of motion gives:
1 . 1
—?;L(—-Gzcote) +5gc0sf =0 .
! L6? = L gsi ]
3 =3 gsin

Lastly, substitute into the energy conservation equation, to give:

1
Egsine = g(sinf, — sin@)

2
ing = —sing
Si 3 0
and:

2
8 = sin™1 (§ sineo)
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A cylinder of radius R and mass m rolls up an inclined plane of angle 6 without slipping.
The inclined plane has mass M and is free to slide along the horizontal surface without
friction.

The cylinder has an initial velocity up the incline of vo and the inclined plane is initially
not moving with respect to the horizontal surface.

a) How high does the cylinder rise before it stops rotating and then starts to roll back
down the inclined plane (h in the diagram)?

b) At this point, what is the horizontal velocity of the cylinder and inclined plane (V in
the diagram)?

(Give your answers in terms of R, m, M, 6, g, and vo.)

Wcylinder — 0
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Consider two identical billiard balls (spheres), each of »

mass M and radius R. One is stationary (ball 2) and the ( ) > O

other rolls on a horizontal surface without slipping with

a horizontal speed v (ball 1), as shown. Assume that all
the frictional forces are small enough so as to be negligible over the time of the collision, and that the
collision is completely elastic.

A. Calculate the moment of inertia of one of the billiard balls about its center.

B. What is the final velocity of each ball a long time after the collision? i.e. when each ball is rolling
without slipping once more.

C. What fraction of the initial energy is transformed into heat?




SOLUTION

Part A
I= frzdm

I= [ x%2mpx 24/R? — x2 dx
=4mpf x3\/R? — x2dx

= 4mpRS [ (%)3 ,(1 - (%)2) ax
= amprsf (3)’ m;d(g)z

x 2
lety = (1—?')
= 2mpR5[ y \[1 - ydy

2 3
integrate by partsu =y, dv =,/1—yhencedu =dyand v = —3 1A-y)2

2 3 2 3
1= anRS[—§ A-yzy— (=3 @ =»2dy)

- 2o\t -6 (1- () - 1 - (;)2)5] from <00

B A 2 RZ
al= (g) M
Part B
Just before the collision
M=v
V= 0
_ V1 _ v
ME=ERTR
wy; =0
Just after the collision (and since friction is negligible during collision and it is elastic)
vi =0
v =v |
And the angular momenta about the center of each ball are conserved, hence :
w'1 =y ='g

And wlz = W, =0

Now, if we look “a long time later” (where the balls are rolling without slipping), then for each
ball we can use angular momentum conservation about a fixed point on the surface where the
balls rolils then for ball 1

Ly = MRv; + lw; = MRy, + lwy

1 I
=" (MR +E)




Or replacing in for L
.+ Iv ' 1
1(1)1 = E =1 (MR +E)
2
" vl v (g) MR?
1 p— p—ti
I+ MR2 7 2
OLL
=)
Vv = 7 v
Similarly for ball 2 we arrive at

1 5
% =(5)v

Part C

N1,
KEpitiqt = ('2') Mv{ +51w1

1 1 "2 1. .7

— 2 - 2 (2 [ 2.
>Mv? + = MR (R) My

KE _17M (2 )2+(5 )2 —1x7M 229
final = 55 MA\FV 7%) ) T2%5MV 55

So the energy lost to friction is

1.7 520
KEinitial - KEfinal - '2' X g Mv E
So the fraction converted to heat is
KEinitial - KEfinal _ Q

KEpitia 49




