Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 14, 2009
3:10 PM - 5:10 PM

Modern Physics
Section 4. Relativity and Applied Quantum
Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 4
(Relativity and Applied QM), Question 2, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code.

You may refer to the single handwritten note sheet on 8 %5 x 11" paper
(double-sided) you have prepared on Modern Physics. The note sheet
cannot leave the exam room once the exam has begun. This note sheet must
be handed in at the end of today's exam. Please include your Exam Letter
Code on your note sheet. No other extraneous papers or books are
permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!
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1. Four electrons are localized in the four vertices of a tetrahedron. Due to the strong
Coulomb repulsion the transition of the electrons between the vertices is forbidden, so the

only low energy degrees of freedom are the electron spins, /75\'(2'),1' =1,2,3,4; s = %
(a) What is the total number of states?
(b) Let the system be described by the exchange Hamiltonian
H=K» 350 (1)
i>j
Find the energy levels and their degeneracies.

(¢) The exchange Hamiltonian (1) can be generalized to include the interactions of
more than two spins. How many of those higher order interactions are allowed by
spatial and time reversal symmetries? (Neglect the spin-orbit interaction)

(d) A generalization of Eq. (1) may have the form
A= Ky 3030 2)
i>j

N Kf(jz)z [(gm 32) (39 39) 4+ (30 39) (39 39)

+ (30 3) (3 .§<3>)]

Find the energy levels and their degeneracies.
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2. If an atom or nucleus makes a transition from state A to state B emitting a photon of
energy £ equal to the energy difference between the two states, an identical atom or
nucleus in state B can absorb that photon and go to state A. This process, called
resonance fluorescence, will not proceed, however, if recoil by the emitter (or absorber)
reduces the photon energy by an amount greater than the line-width of the transition.

(a) Using typical lifetimes of atomic (10 s) and nuclear (107 s) transitions, estimate
the typical line-widths for such transitions. :

(b) Using typical photon energies in atomic and nuclear transitions show that recoil
will not stop atomic resonance fluorescence but will stop nuclear resonance
fluorescence.

(c) In 1958 Rudolf Mossbauer discovered the effect that bears his name and for which
he won the 1961 Nobel prize. This effect can drastically reduce the recoil energy
loss in a nuclear gamma transition. How does it work?

(d) An early application of this effect was made by Robert Pound and Glen Rebka
who allowed photons from the nuclear gamma transition of ’Co to fall down the
Harvard Tower. Assuming that the transition is a typical nuclear gamma transition
and that the tower is a typical tower, estimate the expected energy shift and argue
that the Mossbauer effect allows one to detect such a shift. What is so important
about this experiment?
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3. A monochromatic beam of light is incident on a flat mirror. With respect to the
laboratory, the mirror is traveling in at relativistic speed v in the + x direction. (The
plane of the mirror is perpendicular to the x-axis.) Also with respect to the laboratory,
the incident light beam has frequency f and is traveling at angle 6 with respect to the z-
axis. Find the frequency fr and the angle 65 of the reflected light beam as measured in
the laboratory.
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4. A capacitor is formed from two large parallel conducting plates of proper area Ap. As
seen in a laboratory frame, one plate is moving to the left and the other is moving to the
right, both with velocity (magnitude) v. Ignore fringe field effects in answering the
following questions. Carry out the following calculations for the situation when the two
plates are fully overlapped.

(a) What is the ratio (R) of the capacitance of the moving plate capacitor to a
capacitor with the same geometry but with static plates (evaluate in laboratory
frame)?

(b) If the potential difference between the plates is V, what is the pressure due to
electromagnetic forces on one of the plates as seen in the rest frame of the plate?

(c) If the potential difference between the plates is V/, what is the pressure due to
electromagnetic forces on one of the plates as seen in the laboratory frame?
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5. A photon of wavelength A Compton scatters off a free electron (mass m) which is
initially at rest. The scattered photon has wavelength A\ and scatters at an angle 6
(measured from the incident direction). Express your answers in terms of m, A, § and h.

(a) Calculate ).

(b) Calculate the kinetic energy of the recoil electron.
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Solution

1. 2' = 16.

Sechon# 4 eeL

Problrm # 1
Rleec

2. Introduce the operator of total wmomentum:

200 i3 Zod

J=f a5 gt g {3)
Obviously
]_*2:3+ZZ§“) ) (4)
i<
Thus. the Hamiltonian {1) can be rewritten as
- K /5 \
== (J- -3). 5
2 ) (5)

Eigenvalues of Eq. (5) are classified according to their total angular mo-

menta J? = J(J + 1):

J =0 E:ﬁf; 2 x 1 — folded:

I
J=1 E= —5 3 x 3 —folded: (6)
J =2 E:%: 5 — folded.

- Terms with odd number of spins are forbidden by the time of the time

reversal symumetry. Thus only terms involving either two or four spins are
allowed, As all the vertices in tetrahedron are equivalent the only paiwise
interaction allowed is given by Eq. (1).

Furthermore,

1 ,
s578y 0 = Z5a@ + %f"ﬁ@g); o, B8,y =1,y 2. (7)

(8)

L

3).

[

(3:1\, .32)) (i’“ ‘ ;;;;)) n (;«ju _;—,(a)) (;(1) ;z») _ %(2,(2) '
This means that only comnbination where all the spins are different generate
something new in the Hamiltonian. As all the vertices in tetrahedron are
equivalent, Hamiltonian (2) is the only possibility without involving the
spin-orbit interactions,



. Cousider

2 8

J2=J(J +1):

3K 15K’

8

J=0, FE= > T 2 x 1 — folded;
=17/
J =1 E:_E_i; 3 x 3 — folded;
2 16
3K 3K’
J=2 E=—+—3 5= d.
J 7 + 6 5 — folde

(7) 3423 &0 5 (9)
i<y
Using Ee. (8) we find
i<y
+ 8 Eh(é"“) CEDY(E L EDY ¢ (5D E®YER Y 4 Oy E %3))}
3 1
T 1v(T' j/—ﬂ :\2)>
— b 2
1 -
+ 44 2*5250 52
<
27 . . ) fran e .
- % . 112 st #2) 8 {(;\]) ;«(2\)(—\3) 44)) + (5(1) .545))(\5‘(,) §(4)) _*_(
- <]
15 = - - - 29y 2
_77)+7]2+8.[(§‘“ 2y (5 :{4>>+(—11) %d))@h) 5y (30 54))(
Z L
(10)
Therefore, Hamiltonian (2) can be rewritten as
- 3K 15K’ K 7K'\ 5 K' : )
H=-"+ Ol(x <~~-—>f2+—(f~’)2: (11)
2 6

Eigenvalues of Eq. (11) are classified according to their total angnlar momenta

(12)
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Sec. # 4 REL

Qualifying Examination December 2008 .
Relativity Problem Allan Blaer - K&h*‘J‘*q\
Problym # 3

A monochromatic beam of light is
incident on a flat mirror. With
respect to the laboratory, the
mirror is traveling at relativistic
speed v in the +x direction. (The
plane of the mirror is
perpendicular to the x-axis.) Also
with respect to the laboratory, the
incident light beam has frequency f
and is traveling at angle 6 with
respect to the x-axis. Find the
frequency f, and the angle 6, of
the reflected light beam as
measured in the laboratory.
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Quals problemysolutions) Moving plate capacitor

a) An applied Miﬂerence will generate a surface charge density and that
surface charge will generate a surface current density. The choice of directions for the
plates means that the surface currents are in the same direction. Thus, the magnetic field
between the surfaces of the conductor in the laboratory frame is zero but, the magnetic
field outside the surface currents, and thus is the conductors is non-zero. Thus, the
usual condition for zero electric field in the conductor will not apply. To apply the
standard condition on fields at conductor surfaces, we can transform to the rest frame of
one of the plates. The electric field in that frame is given by E’ = vE, since the is zero
magnetic field between the surface charges/currents. So, the induced surface charge in
the rest frame of one of the plates has magnitude ¢’ = E’/4n = yE/4m. In that frame the
surface current is zero, so we can easily transform the charge density back to the
laboratory frame, o = v’ = v?E /4. The total charge stored on the plate is Q = 0A where
the area is smaller than the proper area due to Lorentz contraction, A = Ap/vy. S0, we
have Q = Ap YE/ 41 = A, vV/4nd. Thus, the ratio of the capacitance to that of static
platesis R = .

If this part is analyzed in the laboratory frame, then the surface charge density is that
which produces an electric field in the conductor that exactly cancels the magnetic
forces. The magnetic field is B = 4/ ¢ where x = ov. So, B = 4nf}o. The magnetic force
on a hypothetical charge moving with the plate is F = gB = q(413?0). The electric field
in the conductor would be Ec = E - 4no. We want gEc + F = 0 (signs are correct). Or we
want E - 4ro = -41f3%0 or
£ LK
o (1 — 2) =~ =0=7"—
g 47 = K 4
consistent with the above result.
b) The pressure on the plate in the plate rest frame is simply P’ = o'E"/2 = y?E2/8m or
P =~2V2/8nd2.
c) The simplest way to obtain the pressure in the laboratory frame is to transform the
force from the conductor rest frame in part b. The total force on the plate in the plate
rest frame is F' = P’A,. The component of the force normal to the boost direction is
reduced by a factor of ¥ under a Lorentz boost so the total force in the laboratory frame

is F =P’A;/v. The pressure in the laboratory frame is therefore, P =F/A =P’. So the
pressure in the laboratory frame is the same as the result in part b.



Relativity problem solution
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