Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 14, 2009
1:00 PM - 3:00 PM

Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 3 (QM),
Question 1; Section 3 (QM) Question 5, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code.

You may refer to the single handwritten note sheet on 8 ¥ x 11" paper
(double-sided) you have prepared on Modern Physics. The note sheet
cannot leave the exam room once the exam has begun. This note sheet must
be handed in at the end of today's exam. Please include your Exam Letter
Code on your note sheet. No other extraneous papers or books are
permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

- Questions should be directed to the proctor.

Good luck!!
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1. An electron beam is prepared by heating a filament, subjecting the emitted electrons to
a potential difference V{, and using a series of electrostatic lenses to guide the electrons
on a trajectory parallel to the x-axis. A steel plate with two slits parallel to the y-axis is
located at x = 0. The distance between the slits is d. The electrons are detected on a
screen located at z = X > d. The screen is free to move along the z-axis. On the screen
we observe an interference pattern. In principle, it is possible with this setup to determine
through which slit the electron traveled. How? Does this destroy the interference pattern?
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2. A beam of excited hydrogen atoms is prepared in the 25 state and passed between the
plates of a capacitor in which a uniform electric field E exists overa distance L (see
figure). The hydrogen atoms have velocity v and move parallel to the x axis in the +z
direction; the electric field is directed along the z axis. Assume that all n = 2 states of
hydrogen are degenerate in the absence of the E-field (i.e. neglect hyperfine splittings). In
the presence of the E-field, certain of the states will mix. You may neglect coupling to
states of n # 2.

(a) Which of the n = 2 states are

mixed by the E field to first orderin f
E? Justify your statements by
symmetry or other arguments. L
(b) Write the Hamiltonian describing
the time evolution of the n =2
states for0 < z < L. @L) {E

(c) For an atom which enters the
capacitor at time ¢{ =0 in the 25
state, find the wave function at time
t<L/v.

(d) If the entering beam contains only atoms in the 2.5 state, find the probability that
the emergent beam contains atoms in the 2.5, 2FP;, 2P, and 2 P states.

Some possibly useful information:
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3. The energy levels of an isotropic three-dimensional oscillator are easily found to be
E = (N+%)hw (where N = N, + N, + N. and N, Ny, N are the number of quanta in
cartesian coordinates). All the degenerate states (fixed V) can also be classified in terms
of orbital angular momentum [ =N, N —2, N —4, ...,0 for N even and [ = N,
N-2, N—4,.., 1for N odd.

Now suppose there is a small perturbation which breaks the rotational invariance of the
system. In this problem you will determine the manner in which the perturbation breaks
the degeneracy, for two forms of the perturbation:

Hperr1 = ar®Ys0(8, ¢)
and
Hpenz = BréY%,0(0, ¢)
Hint: You do not need to evaluate any integrals to solve this problem.

(a) Show that the perturbation Hpy 1, when evaluated to first order in «, does not lead
to a splitting of the levels of the degenerate multiplets (labeled by ).

(b) Show that the Hamiltonian including Hperz (but not Hpery ) has a spectrum for
which m is a good quantum number. Moreover, show that for any level m # 0
there is a degenerate level with — m.

(c) Show that the perturbation due to Hper2, when evaluated to first order in 3, does
not lead to a splitting of any of the levels in the n = 2 multiplet.

(d) Show that for the N = 3 multiplet, Hperi 2, When evaluated to first order in 3, has
the following effects on the spectrum:

i. The ! = 1 states are not split from each other (all m remain degenerate).

ii. Among the | = 3 states, the states with m = +3,4+2,+1,0 are split from
one another, and also from the [ = 1 states.
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4. Consider a spinless particle in a three-dimensional potential, with the Hamiltonian

Pk,
H—2—7n—+‘2—7'

(a) Find the energy eigenvalues, and determine the degeneracy of the lowest four.

(b) Now suppose instead that five identical particles are in this potential. What is the

ground state energy of this system if these particles have
(i) spin %, (ii) spin 1, or (iii) spin ? Assume that these particles do not interact

5

with each other.
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5. A static uniform electric field E = EZ is applied to an electron in a harmonic
potential with natural frequency w.

(a) Describe the effect of the field on the harmonic oscillator wave functions and on
its spectrum.

(b) Calculate the induced dipole moment of the electron, and the polarizability (the
ratio of the induced dipole moment to the field strength).
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Problem

An electron beam is prepared by heating a filament . submitting the emit-
ted electrons to a potential difference V5, and using a series of electrostatic
lenses to guide the electrons on a trajectory parallel to the z-axis. A steel
plate with two slits parallel to the y-axis is located at x = 0. The distance
between the slits is d. The electrons are detected on a screen located at
x = X > d, which is free to move along the z-axis. On the screen we ob-
serve an interference pattern. In principle, it is possible with this setup to
determine through which slit the electron traveled. How? Does this destroy
the interference pattern?

Solution _

To be able to distingnish the interterence pattern ou the screen we need
to be able to measure its position with precision better than the distance
between the peaks, so

AX hX
pos < = = (-

2d 2[)()(1
where py is the electron’s momentum and a is a positive number smaller than
1. Let us take a = 1/3.

When an electron hits the screen at a point z # +d/2, its momentum
vector is not parallel with the z-axis so it will transfer momentum to the
screen which Is free to move along the z-axis. Let ¢, be the angle between
the top slit and the point at 2:

T

(1)

Oy >~ (z~d/2)/X, (2)

then the momentum transfered to the screen if the electron passed through
slit 1 s g1 =~ —pofy (since 4, is small). Similarly, go ~ —ppby with 6y ~




(z +d/2)/X. So if we can measure the momentum of the screen along the
z-axis well enough to distinguish ¢, from ¢ we can determine through which
slit the electron passed.

To do that. our resolution on the momentum needs to be

d
Timom << b‘((“ - ‘]2) = b[)()? (r%)
2

with b a number less than one. Let’s again take 1/3. To see the interference
pattern and determine which slit the electron went through we need

Ji N d h

pg— = ab—, 4
2p0dp0X “ 2 (4)

Tpos Tmom < ab

and we see that this violates the uncertainty principle.
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(a): Label the n = 2 states as 25. 2P, 2P, 2P.. The perturbing potential
is V(i y. z) = Ez. so over the scale of the atom is a constant term (shifting
all Tevels) and a term odd under retlection in z. Rotation invariance about z
erures thar 277 and 277, remain decoupied. The perturbation thereiore mixes
25 and 2F,.

(b} The arom moves on the line = = z;. On this line the potential is

V= EZQ -+ E(Z - ZQ)

In the basis (25.27.. 20, 217, the Hamiltonian is
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and
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adopting dimensionless coordinates we find

Fap

= _ Fag
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21

(¢) The eigenfunctions are y, = —\1/—5 (|25 > £{2P, >) with energy E &+ M.

The initial state is |25 >= % (lv4 > +|¢= >).Thus at time ¢ we have
N

- 1
Pty = Bt

V2

(d) The beam has probability cos(M L/v)? to be in the 25 state and sin(M L/1)?
to be in the 2P, state and no probability to be in any of the other states.

(MY > 4™y >) = Bt (cos(M1)]25 > +sin(Mt)|2P, >)

& m
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MODERN PHYSICS - QUANTUM MECHANICS
Polarizability. SOLUTION.

The Hamiltonian of the baruonic osciilavor inchuiing the feld is

2 2 280
5 . } > LTC .
H= 2 + Zmu?s? —efr = —— + 2 me?{a — X)) — (1
2m 2 2m = 2 ' ) 2w /
where
e& .
o= —>=- (2)
mw?

a) Frow Lg. (1), it follows that the ield shifts the eguiiibriim position of
the oscillator to xg, and shifts the spectrum as a whole by (—e?&2/(2mw?)).
b) The induced dipole moment along & is given by the displacement zg:

e &
(d) = (~ex) = —exy = s (3)
which corresponds to the polarizability
d ¢? .
=TT T (4)
1




