Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 16, 2008
9:00 AM -11:00 AM

Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 3 (QM),
Question 1; Section 3(QM) Question 5, etc.).

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code.

You may refer to the single handwritten note sheet on 8 %2 x 117 paper
(double-sided) you have prepared on Modern Physics. The note sheet cannot
leave the exam room once the exam has begun. This note sheet must be
handed in at the end of today’s exam. Please include your Exam Letter Code
on your note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!
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1. A particle of mass M and charge g is constrained to move in a
circle of radius R. M

(a) If no forces other than those of constraint act on the
particle, find its allowed energies and the corresponding
eigenstates.

(b) A strong, uniform electric field E, oriented in the plane of the circle, is applied to
the system. Find the first few lowest eigenvalues and corresponding eigenstates.
Assume that gRE >> h*/MR’.

(c) If a uniform magnetic field B is applied perpendicular to the plane of the circle,

find the resulting eigenvalues and eigenstates. Work this out for both the E = 0
situation of part (a) as well as the E # 0 case of part (b).
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2. Consider two identical, non-interacting spin Y2 particles of mass m. The particles are
moving in a potential given by

Vixy, x2) =0 for x; and x; in the interval (-a/2, a/2)
Vi(x1, x3) = © otherwise

This is just the conventional 1-dimensional particle(s) in a box.

(a) For the singlet spin state, explicitly solve the Schrodinger equation to obtain the 2
particle ground state wavefunction. Calculate the energy of the ground state.

(b) For the triplet spin state, explicitly solve the Schrodinger equation to obtain the 2-
particle ground state wavefunction. Calculate the energy of the ground state.

Assume that an interaction potential between the particles is turned on. The form of the
interaction is v = vob d(x1—x2) where v, is the interaction strength and b a characteristic

length.

(c) Calculate the first order correction to the ground state energy in the triplet and
singlet states.

(d) Provide a simple physical explanation for the magnitude of the first order
correction for the singlet and triplet states.
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3. Consider a single-electron atom within the field of a laser producing an oscillating
local electric field of &(r) = Re[& exp(-iw?)] in the z-direction. Treating the laser semi-
classically, we can write the perturbation acting on the atom’s electron (within the dipole
approximation) as V = —e &(f) z, where —e is the charge of the electron.

We now tune the laser to be exactly resonant with a transition between the ground state
|0> and excited state |1> of the atom, i.e., the energy difference between the two states

matches the photon energy of the laser: E; — Ey = A w. In the following, treat the atom as
a (non-degenerate) two-level system. Do not use perturbation theory, but do neglect any
weak, rapidly varying terms in the response.

(a) Find the probability that the atom is in state |1> as a function of time . Take the

atom to be in state |0> atr=0.

(b) For a typical (allowed) optical transition in the atom, estimate the electric field
strength needed to achieve the maximum population of state [1) in 10”s. If this

electric field is to be provided by a laser beam with a power of 1 mW, how tightly
should the laser be focused?

Hint: Write the solution of the time-dependent Schrédinger equation as
|w) = Colt) exp (-iEot/ h)|0) + Ci(t) exp (-iEqtl h)|1)
and find equations for the time-dependent coefficients.
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4. Consider a simple harmonic oscillator with frequency @. A coherent state |/1> is
defined to be an eigenstate of the lowering operator: élxl) = lll) . Since the lowering

operator isn't Hermitian, A can be a complex number.

(a) Show that, hp to an overall normalization, a coherent state can be expressed as
|4} = exp(4a")|0)

Here a' is the raising operator and |0) is the ground state.
gop g

(b) Compute the position-space wavefunction y(x) = (x| A) for a coherent state. Hint:

derive a differential equation for ¥(x).

(c) Compute the normalized expectation values of the position and momentum
operators
(Ag2) - (@ela
@ @l
(d) Start with a coherent state |ﬂo> at time ¢ = 0. Show that up to an overall phase,

under time evolution this state evolves into a coherent state |/1(t)>. Express A(?) in

terms of A,.

Useful facts: = | 22| z+-E- |, 4" = moy. P
: 2h mao 2h mao
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5. Consider two identical particles of mass m and spin § = Y2 with a spin-dependent
interaction between them. Let r = r| — r» be the distance between the two particles and

neglect any center of mass motion. The potential is
2

viry=4-6,.4,
r

with & the usual trio of Pauli matrices.

(a) Prove that the total spin § = 0, + 6, commutes with the Hamiltonian and find the
eigenvalues of &, -G,

(b) Find the energies of all of the bound states.

(¢) Find the possible values of the angular momentum for each of the bound states.
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Quals Problems

1. A particle of mass M and charge q is constrained to ¥
move in a circle of radius R.

(a)
(b)

()

If no other forces other than those of constraint act on the particle,
find its allowed energies and the corresponding eigenstates.

A strong, uniform electric field E , oriented in the plane of the cir-
cle, is applied to the system. Find the first few lowest eigenvalues
and corresponding eigenstates. Assume that ¢RE > h®/M R2.

If & uniform magnetic field Bis applied perpendicular to the plane
of the circle, find the resulting eigenvalues and eigenstates. Work
this out for both the E = 0 situation of part (a) as well as the
E # 0 case of part (b). [You should neglect the A2 term in the
Hamiltonian. | :

2. A particle of mass M moves in a three-dimensional harmnic oscillator
well. The Hamiltonian for this system is

(a)
(b)

()

=92

P 1 9
7= P L
iy v L

Find the energy and orbital angular momentum of the ground
state and the first three excited states.

If eight identical, non-interacting spin-1/2 particles are placed in
such a harmonic potential, find the ground state energy for the
eight particle system.

Assume that these particles each have a magnetic moment g = ~§
where 5 is the particle’s spin. If a magnetic field B is applied,
what is the approximate ground state energy of the eight-particle
system as a function of B? Plot the magnetization (—9FE/9B) for
the ground state as a function of B.

try)




1. (a)
(b)

()

Chig) Sechtn 2 Am

Suggested Solutions

P(0) = F=e™, me Z and E,, = B
For such a large E, the particle will under go simple harmonic
motion around the minimum of the potential: (), = hy(2)e™*’

where z = \/M¢Rf and E, = hw(n + 3). Here w = \/7\‘74%.

If E = 0, then the eigenstates are not changed but the energies
are shifted by the usual magnetic moment-B coupling: E,, =

271;";:2 — e%’}f . For the E # 0 case the effects of the magnetic field

can be removed by adding a phase e~
and the energies are not affected.

»eBRQ .
“*3e2 9 to the wave function

mw o2

The ground state () = Ne™» " and has energy Ey = hw%

with w = /k/m. This state has [ = 0 and m; = 0. The first three

excited states all have energy Fy = hw(l1+3), 1 =1 and m; = +1
and 0 if written:

2 mw —~2

(z+iy)en " and ze~
The exclusion principle permits us to put two spin-1/2 particles
in each of these four lowest states. The resulting energy is then
Egnd = 2Fy + 6F; = 18hw.

Since the particle spins are paired, for small B, there is no de-
pendence of F,,q on B. However, when 218 becomes greater
than the energy separation hw between the harmonic oscillator
states, it become energetically favorable to move the three n = 1
particles with magnetic moments anti-parallel to B to one of the
six unoccupied single particle states with F = hw(2 + g) Fi-
nally when 2uB becomes greater than the energy separation 2hw
between these six states and the ground state, the anti-aligned
ground state particle also moves up to an F = hw(2 + %) state.
Thus, the magnetic susceptibility is zero for 0 < uB < hw. It
Jumps to 6u for hw < uB < 2hw and finally jumps to its largest
value, 8u for 2hw < ub3.

#4
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2008 Quals, Hailey, Section 3, OM, Question 1?

Consider two identical, non-interacting spin % particles of mass m. The
particles are moving in a potential given by

V(x1, %) =0 for x; and x; in the interval (-a/2, a/2) and
V(xy, x3) =0 otherwise

This is just the classical 1-dimensional particle(s) in a box.

(a) For the singlet spin state, explicitly solve the Schrodinger equation to
obtain the 2-particle ground state wavefunction. Calculate the energy
of the ground state.

(b)  For the triplet spin state, explicitly solve the Schrédinger equation to
obtain the 2-particle ground state wavefunction. Calculate the energy
of the ground state.

Assume that an interaction potential between the particles is turned on. The
form of the interaction is v = v,*b d(x1—x;) where v, is the interaction
strength and b a characteristic length.

(¢)  Calculate the first order correction to the ground state energy in the
triplet and singlet states.

(d) Provide a simple physical explanation for the magnitude of the first
order correction for the singlet and triplet states.
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Millis 07 Quantum Solution

(a) G1-G2 = & ((&'1 + 6'2)2 ~ 57— &’%) = %El +&2)% — 3.} Thus the spin-
dependent part of the Hamiltonian is proportidaal to (&, +249) and therefore
commutes with it.

(b) The triplet states are not bound (repulsive potential). The singlet state
has potential V(r) = —3¢2/r. The problem is thus hydrogen with e? — 342 and
a mass equal to the reduced mass ;= m/2. Thus eigenvalues

_ 9mg?

En 2n2

(c) The bound states are fermions (because spin 1/2 and spin singlet, mean-
ing the wave function is odd under interchange of spins; thus even under inter-
change of particles; thus only EVEN angular momenta are allowed.
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