Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 10, 2007
9:00 AM-11:00 AM

Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 3 (QM),
Question 1; Section 3(QM) Question 5, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code

You may refer to the single handwritten note sheet on 8 %4 x 11” paper
(double-sided) you have prepared on Modern Physics. The note sheet
cannot leave the exam room once the exam has begun. This note sheet must
be handed in at the end of today’s exam. Please include your Exam Letter
Code on your note sheet. No other extraneous papers or books are
permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!
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1. Consider a particle moving in one dimension under the influence of a potential AV{(x),
with V(x) — 0asx — . The Hamiltonian is
2
H=£ 1 r(x)
2m
For simplicity, assume that the potential is zero in the regionlx[ > a, as shown in the

figure.
Fx) 4

Ay

(a) Use the wvariational principle to show that as long as fl"'(x)dx<0 this

Hamiltonian has a bound state for an arbitrarily small but positive coupling A.
(b) Give an upper bound for the energy of this bound state for 4 <<1.

(¢) What does this approach yield for bound states in three dimensions?

Section 3 Page 2 of 6




2. The deuteron is a bound state of the neutron and proton. Consider a simple model of
the deuteron in which the nuclear potential is a spin-dependent 3-dimensional, radial
square well.
Vir)=-<"2(1+5, 6,) where
V.ry=-V, 0O<r<a, Vo >0
=0 r>a

&, and & p are the Pauli spin matrices for the neutron and proton, respectively.

(a) What are the possible values of the total spin of the deuteron?

(b) Construct explicit expressions for the total spin eigenstates in terms of the neutron
and proton spinors.

(¢) Explicitly evaluate V(r) for the possible deuteron spin states. Which spin state
leads to bound states of the deuteron, and which to unbound states?

(d) The ground state of the deuteron has relative angular momentum / = 0. Solve the

Schriédinger equation to obtain the ground state wavefunctions. You need not
normalize the wavefunctions.
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3. Consider a two-level quantum system described by Hamiltonian H, with states {a> and
|b> and energies £; = 0 and £y = Eo. The system is initially in state |a>. Suppose that a
constant perturbation H' is applied from time ¢ = 0 until some arbitrary subsequent time ¢,

Find the probability Py(r) of being in state |b> just after the perturbation has been
removed. Sketch the variation with time ¢, indicating characteristic time scales on the
plot. (Partial credit will be given for an accurate plot, even if the information is
incomplete.) The problem should be solved without approximation for two forms of the
perturbation H’.

() <aH'la> =U,, <bH’[b>=U,, <aH’|b>= <b|H’|a> =0

(b) <ailla>=0, <bH'|b>=0, <aH'|b>=<bH’|la>=U.
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4. Consider a particle of mass m moving in one dimension and subject to the potential
Vix)=0 x<(
Vix)=Vyad(x—a) x>0

shown in the sketch.

Forx > aand E > 0 the wave function may be written

W (x) = de~™ 4 Bel+id(k)
with 4, B, ¢(k) real and 4, B> 0.

2 2
(a) Conservation of current implies a relation between |4] and |B| . Please state this
relation.

(b) (No calculation required). Information about the scattering is contained in the
‘phase shift” @(k) which depends on the wavenumber k. Please state the limiting

behavior of ¢ as |k becomes large and as [k{— 0 and give the physical reason for
your answer.

(¢) Determine ¢(k) as a function of V,,, a, m and k.

Y

T VoadXx-a)

=Y
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5. A localized electron (s = ') is subjected to a time dependent magnetic field B(¢). The
corresponding Hamiltonian has the form

H(t)= g 155 B()
where 1, is the Bohr magneton, g, is the g-factor, and 5 is the operator for electron
spin. At ¢ = 0 the wavefunction in the basis s, = + ¥ has the form

!
p(r=0)= (o)

(a) Find ¢ (¢) for B = (O, 0, B, (t)), where B, (f) is an arbitrary function.

(b) Find w(¢) for B = (BL cos wt, B sin wt, BZ), where B, and B, do not depend

on time.

(c) Find w(¢) for B(f) to be an arbitrary slow function, i.e.
n’dB/dt’ << g pyB’
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Solution of the problem on Quantum Mechanics

1. Use the variation principle to show that as long as JV(x)dx <0 this

Hamiltonian has a bound state for arbitrarily weak but positive coupling A.
(§ points)

According to the variation principle
i) |
(wlw)
where E is the ground state energy, is the Hamiltonian, and ¢ is any normalizable
function with arguments appropriate for the unknown wave function of the system. In

our case
p’ a
H="—+AV{x = —ifh-—
2m ( ) P o

5

i a;/> + A (iﬂt//(x]z V(x}dx

(vlHy) = <w §m

If y(x)is real and (£ o0)=0
2 \ 7w 2 1 7w ) 2
R e
/ .

—[x]/b E

Let us use, e.g., the following probe function: y/(x) =e

flz ¥ —2x/ & hz
=— e dy = —
<(// W> bzmj- 2bm

Provided that b >> aone can neglect dependence of w(x) on x in the potential term:

2 ) 7 () = Ap O [ (x)e :/?,j]'V(x)dx

-
z

P
2m

Finally. for the nonmalization factor we have
<U/‘l//> = 2]6‘2‘/ ‘dx = b
0

We now can write the variation principle as

/

L H 2 1%

£y = /‘I L :kﬁ—7 . J‘If"(.\')a'x
Q(,//’L//> 2mb- b

Now one can see that for large enough value of b, i.e. for large enough size of the
probe function the left hand side of this inequality is negative if A J.V(x}{x <0. We

thus conclude that £, <0
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2. Give an upper bound for the energy of this bound state for A4 <<1
(5 points)
One can use the inequality
wiH 2 ©
) w2 Tt = #(6)
<(//Igz/> 2mb* b
to estimate the ground state energy. Let us minimize (b"'). Evaluating the derivative

daFht T
T s [r()ax

we find that i1t vanishes at

(4 [Pk <o)
Note that for A -0 b —» oo and our condition a<<b is satisfied. Now we can

determine the minimal value of the function F(b"') and obtain an estimation for the

ground state energy

- N2
Ly = F(b" )mm = ﬂ—)—nﬂ/l J‘V(X)(i\'J

STE

3. Would the same approach work in three dimensions? Explain why.
(5 points)

The answer is NO. In three dimensions the potential term A 'ﬂ(//(?]z F(x)dr will

be proportional to the third power of the inverse size of the probe function &7,

2
b

7 (,7\, ,‘/{u/ Ly will still behave like b7 As aresult the
L

.

sum of these two terms will be positive for large b, in contract with one-

while the kinetic term { 47

s

dimensional case. when this sum turned out to be negative for 4 fl/'(x}]x < Qand

-

b —» oo Only strong enough potential can host a bound state in three dimensions.
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Sec 32 HS

Solutions:

e - 1 .
thde = grppB(t) - 8¢ = 59L#BB(t) oA

where 6, , are the Pauli matrices. [1pt]

a)

Find ¢(¢) for B = (0; 0; B,(t)), where B,(t) is an arbitrary function.

(t) = exp {—i%gum /O dt@(tl)&z} (0) = :

[4pts].

Find ¢:(t) for B = (B, coswt; B sinwtB,; B,).

Looking for for the solution in the form

, wté. | -, .
(t) = exp { 5 } (t)

we obtain from Eq. (1)

. ~ 1 R fuw 1 N -
thoy = [‘Q“QLﬂBBLUm + <7 + §9LMBBZ> Uz} P

which has the time independent Hamiltonian. Solving Eq. (4), we find
P(t) = exp { —it L Bio.+ 2+ 1 B. s $(0);
=expy =it | oo grupB10s 5 T gpILkBB: |0 );
Finally, with the help of Eq. (3), one obtains

ot /7 Twt Bk .
eiwt/2 {COS - [W_g“éf ' ] sin %E}
d/y(t) = 3

.3 . B, /h .
—je iwt/2 [gLﬂBﬂ i/ :’ sin QTt

where

[6pts]

exp ['* S gLUE fot dtle(fL)]
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¢) Find ¢(t) for

(0; 0; B.); 0<t<ty
B(t) = { (Bs; 0; 0); t1 <t <ty
(0; 0; By); t>ty;

where t9 > t{, and B; . do not depend on time.

| exp [~ ounnB.]
exp [~k grupB.0.] ¥(0) = o : 0<t<ty
0
(t—1 it
€Xp I:l(—Qh—l)gL/“LBBIO'I} exp ["%‘égLuBBzUz 1L’(O)
~ exp [‘%QLNBBZ] oS (tA“)gZ#BBI ; t1 <t <ty
. N (- B, i
Y(t) = —1sin (t—t—‘)%%@—— exp [~ G grupB:] (7)
] f(tvtg B ox 7i(tg~t1) Boo
€xp 9% JLUB D0 p I LB LB0¢
M unBaos | 0(0)
X exp | === g
p QFLgL'uB 20z : t> by
. o [7 i'r,,;%ﬂ,x,ng BJ O3 L'im%ﬁ_
_isin (Q-h);;/iBBz exp {i(ﬁfézh‘tl)gLuBBz]
[4pts]
d) Find ¢(t) for B(t) to be an arbitrary slow function, i.e.
h|dB/dt| < grupB®. (8)
Let us represent B(t) as ‘
B(t) = |B{t)] [sin0(t) cos ¢(t); sind(¢)sin@(t); cosd(t)]. (9)

Then

B(t)& = |BO|U(NaU (1), U0 =1, U = explid(t)s. /2] exp[—i0(t)dy/2)exp[—ig(t)d,/2].
(10)

Looking for the solution in the form

Wit) = U0)9(t);  $(0) = UN0)w(0); (11)
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we obtain from Eq. (4)
iROu(t) %’#j—@l‘fi — hU8T | . (12)
Because of the condition (8), one can replace
Uto,U = 6zTr%UAT8¢(7 (13)
and obtain from Egs. (12) and (11)
U(t) = U(t) expl~io. (wp(t) + 0p ()T (0)1(0), (14)
where
2h ’

¢ t ~ . t .
0 0 ]

are the dynamical and Berry phase respectively. [9pts for dynamical phase; 6pts for Berry

phase.]




Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 10, 2007
11:10 AM —-1:10 PM

Modern Physics
Section 4. Relativity and Applied Quantum
Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 4
(Relativity and Applied QM), Question 2; Section 4(Relativity and Applied
QM) Question 3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code

You may refer to the single handwritten note sheet on 8 %4 x 117 paper
(double-sided) you have prepared on Modern Physics. The note sheet
cannot leave the exam room once the exam has begun. This note sheet must
be handed in at the end of today’s exam. Please include your Exam Letter
Code on your note sheet. No other extraneous papers or books are
permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.
Good luck!!
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1. A proton with y =4/1- ivz /¢? ' collides elastically with a proton at rest. If the two

protons rebound with equal energies, what is the angle 6 between them?
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2. Consider a charged pion decaying at rest via 7+ — #v,, . Assume the v, has a very

small, but non-zero mass. Show that the magnitude of the 3-momentum, p, of the muon is
reduced, compared to the case with a massless neutrino, by a factor

Ap  my(my e ml)
P (mi-ml)

where m_, m, and m, are the pion, muon and neutrino rest masses, respectively.
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3. When we calculate the energy spectrum and wavefunctions of an atom we do it in an
isotropic environment, in which we artificially define an x,y,z coordinate system.

For an atom in a solid, or an impurity atom in a solid, the environment is no longer
isotropic, but has a particular, lower symmetry. Under these circumstances it is often a
good approach to construct new wavefunctions, having the correct symmetry of the
crystalline environment, from linear combinations of wavefunctions of the isotropic case.
The following problems require you to find such linear combinations for the two most

cominon ¢ases. 3

(a) A set of normalized and mutually orthogonal p-state wavefunctions for an atom
can be written in the form:

pe=xfr), ;y=y Ar), p: =2 1)
Consider the linear combination vy = ap, + a,p, + a.p..

Find four sets of coefficients (¢, a,, a.) that give the normalized p-state
wavefunctions with positive lobes pointing towards the corners of a regular
tetrahedron. (Remember that four of the corners of a cube are corners of an
inscribed tetrahedron)

(b) Consider the linear combination: ¢ = bs + cy, where y is one of the four
wavefunctions calculated above and s is an s-state wave function, normalized and
orthogonal to p,, p,and p.. Find values of b and ¢, which make the four resulting ¢
wavefunctions orthogonal to each other and normalized. Write out these four
wavefunctions in terms of p. p,, p. and s. (These are the sp’ hybrid
wavefunctions.)

(¢) The sp® hybrid wavefunctions, which are involved in the bonding of a two-
dimensional layer of carbon in graphite, are of the form:
E=as+ Pp+ypy
where s, py, and p, are s and p wavetunctions as detined in the previous questions,

(a) and (b).
Find values for «, § and y that give three normalized mutually orthogonal

wavefunctions with positive lobes directed at 120" with respect to each other in
the x-3 plane.
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4. Consider the S and S’ frames as shown. A ray of
light of frequency v’ is emitted from the origin of the
S’ frame at an angle ¢’ towards an observer who is at
rest in S.

(a) Derive an expression for the frequency of the
light as observed in S, i.e. find v in terms of

v, p g
(b) Under what conditions is there a Doppler

effect observed that is a purely relativistic
effect?

Section 4
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5. Suppose a crystal’s structure is such that a,, a, and a, define the distance between

atoms in directions x;, x, and x;. The crystal has N, N, and N, atoms in directions

X, X, and x; respectively so that the position of an atom in the crystal can be written as
Vo = Mdy + 1ydy + nyd;

where n;, n, and n; are integers. Incident on the crystal is a plane wave y ~ pltk7-at).

Assuming that the incoming wave is scattered elastically by the atoms in the crystal, what
is the intensity of the scattered wave at a distant point P?

— —

T,

N-1
Hints: Ze’a =

7=0

[slastic scattering implies that ‘/E‘ = ;k{
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Sec 4 #1

2007 Quals Problem SOLUTION from Emlyn Hughes
Section 4 - Relativity
11/22/06

Proton-Praeton Collision

Since the energies of the protons after the collision we equal. they will
rebound at the same angle /2 relative to the initial momentum of the
proton (see Figure S.2.17). Again we use ¢ = 1. In these units before the

/‘,Y
P
(@]
e
. / 672
N

Figure §.2.17

cothision
p=miy

o= my
Using momentum conservation, we have

. g 3
my = 2mj3% cos <~> (§.2.17.1)

p
. ¢
or Oy =265 €05 5 (S.2.17.2)
where Jand 5 stand for 3 and v alter the collision. Energy conservation
vields
mo+ oy = 2my (5.2.17.3)
or
v+ 1=2y (5.2.17.4)
Now,

Gy = /A2 <1 (5.2.17.5)




So. we obtain by using (5.2.17.4)

A7 = /3~ 1 = \f(v +1)2/4 -1 (5.2.17.6)

Substituting (S.2.17.6) into (S.2.17.2) and using (5.2.17.5) gives

T 9
Vol 2y /(v + 1P =1 cos 5

. .0 , 0
v - 1= (3 4+ 2y - 3) cosza = (y = D)y + 3) cos® 5

(7} .
cos @ = 2cost = — 1 = ——
For v = 1, i.e.. in the classical limit of low velocity. cos 6 = 0, and we obtain
the familior result that the angle between billtard balls reboundmyg with
equal energy is 00", If v > 1 (extremely refativistic case). then cos @ ~ 1
and 4 — 0. '
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Find values for a, B and y that give three normalized mutually orthogonal
wavefunctions with positive lobes directed at 120° with respect to each other in

the xy plane.
XOOOOOOOOOOOOOXXXXIXKIOXXXXXXX XXX XXXXXXXXXXXXX
SOLUTIONS:

A)

The corners of a tetrahedron are in the directions [1 1 1], [-1 -1 1], [1, -1, -1] and
[-1 1 -1]: the sets of coefficients (ax, ay, a;) must be proportional to these vectors.

For normalization:

,“Vllp |2dV =a’+a’ +a,’ =1,

since the p states are orthonormal. The required sets of coefficients are therefore
(143, 13, 1N3), (-1N3, -3, 1N3), (143, -11V3, “AN3), (13, 13, -1/43).

B)
For the first of these linear combinations we have @411 = bs + c/N3 (px+ py *+ P2)-

For normalization

JI P111 lde=bz+c2=1

For orthogonality, for example

J. @111 @1 dV =0

That is

j b’s? dV +I U3 (px+ Py + P2)( -Px - Py* P2) dV = b c¥3=0

These are satisfied by b = 1/2, ¢ = V3/2 so that @111 = V2( 'S + px + py + P2).
The others can be calculated similarly.

C).
Normalized vectors (B,y) at 120° to each other are (1,0), (-1/2, ¥3/2) and (-

(1/2, -¥3/2).

Consider unnormalized states,
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§1=as+py and §;=as - 1/2 p, + V3/2 p, (a may be taken the same in both cases
because the wavefunctions differ only in orientation).

For orthogonality

J g & dV=a?-1/2=0
so that a =1/v2.

For normalization

J | € |2 dV =f [siN2 + py| 2 dV =3/2,
so that for normalization all states must be multiplied by ¥(3/2).
The required values of (a, B, y) are (1/43, ¥(3/2), 0), (13, -1/36, 1/42), and

(1143, -1/16, -1/\2). The other orthogonalities and normalizations can be
produced and checked in a similar way.
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Quals Question — Relativity
Mike Tuts, 11/22/06

Question: Consider the usual S and S frames as A S AS
shown. A ray of light of frequency v’ is emitted y y
from the origin of the S’ frame at an angle &’ Light ray
towards an observer who 1s at rest in S. to the

observer
A. Derive an expression for frequency of the
light as observed in §, 1.e. find v in terms of v/, o

B

B. Your freshman students have learned about

the Doppler effect so they would not be

surprised to observe a change the frequency of

the light from a moving source even if they knew nothing about relativity. But based on
what you have derived above, under what conditions is there a Doppler effect observed
that is purely relativistic effect?

\/
o 4

Answer:
A. Consider a plane wave in §” propagating along the direction shown in the plot, i.e.
along ©’. Such a wave would be described by

x'cos@'+y'sind |

il
/1!

which has a velocity ¢ = AV,

cos 27[(

Whereas in the S frame it is still a plane wave (since the Lorentz transformation is linear)
described in a similar fashion
xcos@ + ysinf
cos2m — — 11
\ A y
So now apply the Lorentz transformations

£ ()

e X —vi - C !
Ji-p J1- 47

To obtain

cos I cos@'+ [ ot sm'ﬁ . (1+ fcosd )t'

X’l l_ﬂz 2 [l_ﬂz
So comparing terms we get
, v + fcosd")

J1-f?

L




B. If the source is moving transverse (6=90°) to the observer, then classically there
would be NO Doppler shift. In the relativistic case, there IS a Doppler shift
because of the time dilation. Formally, take the expression above and write the
inverse transformation as

A G fcosb)

JI-5°
Which we can solve for v with =90°
v =v'y/1- A* (which reduces to the classical case of no shift for B small).
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