Columbia University
Department of Physics
QUALIFYING EXAMINATION
Monday, January 9, 2006
9:00 AM —-11:00 AM

Classical Physics
Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. (You will not earn extra
credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 1 (Classical
Mechanics), Question 1; Section 1(Classical Mechanics) Question 3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code ' ' o :

You may refer to the single handwritten note sheet on 8 /2 x 11” paper (double-
sided) you have prepared on Classical Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at the end
of today’s exam. Please include your Exam Letter Code on your note sheet. No
other extraneous papers or.books are permitted. :

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor-

Good luck!!




Problem 1 - Section 1 Classical Mechanics

A cylinder of length L, radius R and mass density p rolls on a horizontal surface without
slipping. A hole of radius r<R has been drilled through the cylinder parallel to its axis at a
distance R/2 from its center. Describe the orientation of the cylinder by specifying the
angle © between the vertical direction and a line connecting the centers of the cylinder
and the hole. If initially the cylinder is at rest but 8 has a small non-zero value,
0 (t=0) =6y << 1

predict the subsequent motion 0 (t). Draw a graph of 0 (t) indicating the times, if any,
where 6 =0.




Problem 2 : Section 1 Classical Mechanics

Two massless springs with spring constant k are connected to two masses that hang
vertically as shown in the figure. The top one has mass 3m and the bottom one has mass
2m. Find the frequencies of the normal modes of this system for vertical displacements.
Describe the motion of each of the normal modes.
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Problem 3 : Section 1 Classical Mechanics

A uniform ladder of weight W and length L is leaning at an angle 0 against a structure
whose height is h < L. The situation is pictured in the figure below. (Note that the
normal force at the corner is perpendicular to the ladder.) There is static friction between
the ladder and the ground, but negligible friction between the ladder and the vertical
structure. Find the coefficient of friction between the ladder and ground that would be
necessary to keep the ladder from moving in terms of L, h, and 6.




Problem 4 . Section 1 Classical Mechanics

A solid spool of mass M and diameter d is released from rest a distance | from the edge
of a table. The spool is connected via a massless, inextensible string to a hanging mass
m. The spool slides and rotates freely. What is the velocity of the mass m when the
spool's center of mass reaches the edge of the table?




Problem 5 : Section 1 Classical Mechanics

Consider the motion of the earth around the sun. Let's approximate the orbit as circular.
Suppose the sun very slowly loses its mass, from an original mass of M to a mass of M,.
Suppose the initial radius of the orbit is R, and the final radius is R,.

What is R, in terms of the other parameters?
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N\ Quantum Mechanics:

nsider a hydrogen atom in the 1s state. The magnetic interaction
of tispin of the proton §p and that of the electron . is given by the

8T gpGe . - 3, ‘ )
*—ﬂj—ﬁ——z‘ 3p - Se ()'5\(7"() (l)
3 dmpinect

niasses.

(a) If the hydrogen atom wave fulsgon is ¢ (1) = ¢mr/eo \/;r(T% with
g = h?/(mee?), find the splitting Dxgween the /=0 and ' =1
hyperfine states. (Here AF is the totaNgpin of the electron and
proton.) [8 points]

the shift in the

(b) If a weak magnetic field B is applied, determil
110 points|

energy, 0 F(B), of the lowest hyperfine state.

(c) Compute the magnetic polarizability, ap = — 0?0 E(BNYB? g=o
for this ground state. j

Mechanics:

A cvlinder of length L, radius R and
mass density p rolls on a horizontal sur-

face without slipping. A hole of radius

r < R has been drilled through the R
cvlinder parallel to its axis at a distance
R/2 from its center. Describe the ori-
entation of the cylinder by specifying
the angle 8 between the vertical direction and a line connecting the
centers of the cylinder and the hole. If initially the cylinder is at rest
but # has a small non-zero value, 8(t = 0) = 06, describe the subsequent
motion. Find the time required for § to decrease to zero.  [20 points]
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Chnst p-2
( solution)

% 2. Cousider rotation about the point of contact. £. Treat the cvlinder as

a complete cylinder of radius R with mass A/ == pr R?L and a second
of negative mass —m = —pmr?L. The first cylinder exerts no torque
about P while the second exerts:
3R . :
7= ——{)—mrrng(J [5 points] (7)

assuming 6 to be small.
The moment of inertia about P is that of the cylinder of radius R minus
that of r:

1 : . . . . .
I= BA»IRZ + MR? — 5m'r‘) - m(3R/2)* [5 points] (8)
where the parallel axis theorem has been used.
Finally we can combine these:

[— =7= —7pﬂ'7“2L-gﬁ [5 points] (9)

which describes simple harmonic motion with period

T = \/21/3Rpmr [2/ 13 points] (10)

Thus, the cylinder will roll back and forth. executing simple harmonic
motion about the equilibrium position § = 0. It will take 7°/4 time
units to first reach 6 = 0 [2 points].
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Two massless springs with spring constant k are connected to two masses that hang
vertically as shown in the figure. The top one has mass 3m and bottom one has mass 2m.
Find the frequencies of the normal modes of this system for vertical displacements.
Describe the motion of each of the normal modes.

L

Solution:

Let x,(x2) be the position of the top (bottom) mass with respect to the ceiling.

1 R 1, , 1
L= E’mfcl' +;2mx3‘ +3mgx, +2mgx, ——2—kx|‘ -

Z

k(x, —x, )2

Then Lagrange's‘equations are:

3m¥, —3mg + 2kx, — ke, =0

2mi, —2mg +kx, =0

The mg factors can be removed with a change of variables.

Assuming small oscillations with x, = 4, cos @t gives

2k =3mo’ —k x4
—k k—2ma’ )\ x,

which yields nomal mode frequencies of Ji/m and JVk/6m

For the vk /m frequency the motion has both masses moving in opposite directions with x, = —x, and
o

. . . . . . 2
for the Jk/6m frequency the motion has both masses moving in same direction with x, = =X

P
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A uniform ladder of weight W and length L is leaning at an angle 6 against a structure
whose height is h < L. The situation is pictured in the figure below. (Note that the
normal force at the corner is perpendicular to the ladder.) There is static friction between
the ladder and the ground, but negligible friction between the ladder and vertical
structure. Find the coefficient of friction between the ladder and ground that would be
necessary to keep the ladder from moving in terms of L, h, and 6.

Solution:

Let N; be the upward normal force of the ground and N, be the normal force from the
vertical corner.

Vertical Forces: N, + N, cos@-W =0

Horizontal Forces: ~ N, sin@+ f =0

Torques around ground point: —W L cos@+N,——=0
2 “sind
Solving these gives:
N = WLsin6cosé N o= W (2h— Lsin8cos’ ) /= WLsin® fcosé
? 2h ‘ 2h ‘ 2h
Lsin® @cos8

Then u=f/N, =

(2h - Lsinfcos’ 6)

$
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Subject: 2 questions tor the Quals committee

From: Lam Hui <lhui@astro.columbia.edu>

Date: Wed, 23 Nov 2005 12:42:20 -0500 (EST)

To: lalla@phys.columbia.edu, lhuii@phys.columbia.edu
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is an adiabatic invariant.
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Columbia University
Department of Physics
QUALIFYING EXAMINATION
Monday, January 9, 2006
11:10 AM -1:10 PM

Classical Physics
Section 2. Electricity, Magnetism & Electrodynamics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. (You will not earn extra
credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 2 (Electricity etc.),
Question 2; Section 2(Electricity etc.) Question 4, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single handwritten note sheet on 8 %2 x 11” paper (double-
sided) you have prepared on Classical Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at the end
of today’s exam. Please include your Exam Letter Code on your note sheet. No
other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Problem 1 : Section 2 EM

A very long conducting cylindrical rod of radius a and length L is surrounded by a
conducting cylindrical shell whose inner radius is 4. There is electric potential V; is
applied between two conductors (the inner conductor is at higher potential) and a uniform
magnetic field By is directed along the axis of the cylinder as shown in the figure below.

e
e

(a) Find the total net charge on the inner conductor.

(b) Suppose an electron with charge —e and mass m is orbiting around a circular orbit
around the inner conductor at a distance R away from its cylindrical axis and well away
from the edge of cylinders. Find the velocity v of the electron in this circular orbit.



Problem 2 : Section 2 EM

An oscillating electric dipole moment p(¢) = p, cos(w?) Z generates radiating electric and
magnetic fields. Far away from the dipole, the scalar, V(x,t), and vector

potentials A(X,t), due to this dipole are written as

V=——p"—w—(ﬂ]3in[w(t—r/c)] and  A=-FPY sintw(r—r/c)2
Are,c\ r 4rmr

in ST unit where ¢ =1/(y,&,)

(a) Show that the total find power of radiation emitted from this dipole is given by

2 4 2 4
_Hoby W Py W

in ST unit (or P = 3
127c 3¢

In cgs unit).

(Hint: Work in spherical coordinates. This integral might be useful fsin3 6de6 =§ ).

(b) Consider a classical charged simple harmonic oscillator with mass m and charge ¢ is
oscillating with angular frequency w. Let Ay is the oscillation amplitude at ¢ =0. Find the
time, 7T,,, when the amplitude of the oscillator reduces in half.




Problem 3 : Section 2 EM

Maxwell’s equations yield the following wave equations for a linear, isotropic
medium with conductivity o:

. O?E 0E 14
R e R
V2E - epr —ouge = =Vps (1)
- O°H oH
2H e opu— =
V*H —eu a2~ TH o 0 (2)
with .
0H = =
/J‘ﬁ +VxE=0 (3)

Consider a plane polarized electromagnetic wave in vacuum, propagating
in the positive z direction. It strikes a semi-infinite conducting slab, whose
boundary is at z = 0. Determine the ratio of the amplitude for the reflected
wave to that of the incident wave for the case where the conducting slab is a
good conductor (o >> we).




Problem 4 : Section 2 EM

Steady current I flows in the circuit below. The solenoid is long with length
L >> radius a, and number of turns n=N/L >> 1/a. The resistance R is

~ given but the resistivity of the wire elsewhere can be neglected. The straight
wire inside the solenoid is coaxial with the solenoid.

Find the net flux of electromagnetic energy through the cross section area
n a*2, of the solenoid (far from its edges)

N

\\7




Problem 5 : Section 2 EM

A very long wire of radius a is suspended a distance d above an infinite
conducting plane. In the case that d >> a, find approximate expressions for

a. The capacitance per unit length of the wire, conducting plane system.

b. The surface charge density on the conducting plane as a function of y,
the distance along the plane lateral to the wire.

=
£
k3
5
k]
=

R RO OAR R
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Philip Kim 2006 Qual
E&MI:

A very long conducting cylindrical rod of radius a and length L is surrounded by a
conducting cylindrical shell whose inner radius is b. There is electric potential Vj is
applied between two conductors (the inner conductor is at higher potential) and a uniform
magnetic field By is directed along the axis of the cylinder as shown in the figure below.

/' |
.

(a) Find the total net charge on the inner conductor.

(b) Suppose an electron with charge —e and mass m is orbiting around a circular orbit
around the inner conductor at a distance R away from its cylindrical axis and well away
from the edge of cylinders. Find the velocity v of the electron in this circular orbit.
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Philip Kim 2006 Qual
E&M II:

An oscillating dipole moment p(z) = p, cos(wt) Z generates radiating electric and

magnetic field. At far away from the dipole, the vector potential due to this dipole is

written as

A= —HoPW Ginlw(e —r/¢)]5 in ST unit (or 4 =-22%
4y cr

sin[w(t — »/¢)]Z in cgs unit),

(a) Show that the total find power of radiation emitted from this dipole is given by

2w4 2w4
p=thP ¥ 4 ST unit (or P=p:;’—3
c

127 ¢

in cgs unit).

(This integral might be useful fsin3 6do =§ ).

(b) Consider a classical charged simple harmonic oscillator with mass m and charge g is
oscillating with angular frequency w. Let 4y is the oscillation amplitude at z =0. Find the
time where the amplitude of the oscillator reduces in half.
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Belobordov
11/28/05 E&M

= Iy —=
gL

Steady current I flows in the cicruit shown in the figure. The solenoid is long (length I, > radius a)
and has number of turns n = N/L > a~!. The resistance R is given; neglect 1esistivity of the wire
everywhere else in the circuit. The straight wire inside the solenoid is coaxial with the solenoid. Find
the net fAlux of electromagnetic energy through the ra? cross section of the solenoid (far from its edges).

Solution: Poynting flux inside the solenoid is

. ¢
S=—

ExB.

s
We'll use cylindrical coordinates 7, ¢, z with the z-axis along the axis of the solenoid. First find electric
field B. It is created bceause there is potential drop 7R between the solenoid and the wire on its axis.
By symmetry, E4 = E, = 0, and the non-zero component E; depends on 7 only. £, may be found

from VB = 0 between the wire and the solenoid, which gives

1d . i C
;-JT‘(TET)IO, ET——T—.
C is found from the known potential drop. Denote the radius of the wire by b, then
@ Q IR
IR = / 7 Ir =(C'1 -, O = —————o.
A E, dr Cnb In(a/b)

The Poynting flux is then given by,
S=£aaxwwwﬁmg=ﬁ£4%%—&%y

where e,, ey, and e, are unit vectors tangent to the coordinates lines and we have used e, X g4 = €,
and e, x e, = —ey. The net flux of electromagnetic energy through the solenoid is

. a 2 a
Fz/ dr/ dg S =/ —C—E,B,j,eﬂrrrdr (1)
b 10 p 4n

(the second term with B.e, vanishes after integration by symmetry) It remains to find By(r) and
calculate the integral (1)

The solenoid itself creates a uniform B, and does not contribute to By The axial wire creates By
which is found by integrating Maxwell equation V x B = (4r/c)j over the cross section of the wire and

then applying the Stokes’ theorem,
47 27
IrrBy = —I,  By= —.
' ¢ er
Substituting the known FE,(r) and Bg(r) into equation (1) and petforming the integration, one finds

' F=1IR




Brian Cole E&M

A very long wire of radius a is suspended a distance d above an infinite
conducting plane. In the case that d >> a, find approximate expressions for

a The capacitance per unit length of the wire, conducting plane system.

b The surface charge density on the conducting plane as a function of y,
the distance along the plane lateral to the wire.
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