Columbia University
Department of Physics
QUALIFYING EXAMINATION
Thursday, January 13, 2005
9:00 AM -11:00 AM

General Physics (Part I)
Section 5. Thermodynamics and Statistical Mechanics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out.of the 6 included in this section. (You will not earn extra
credit by doing additional problems). Apportion your time carefully.

Use separate answer bboklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 5 (General Physics),
Question 2; Section 5(General Physics) Question 7, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single note sheet on 8 2 x 11” paper (double-sided) you have
prepared on General Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam.
Please include your Exam Letter Code on your note sheet. No other extraneous

papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Section 5 — Question 1

A quantum gas of N independent, 3D, spin-1, anisotropic oscillators have a
Hamiltonian: '
2
H =42Q—+l(w12x2 +wiy? + w:fzz)—ﬁ-g
m
where p is the magnetic dipole moment and B is a uniform magnetic field in the z-

direction.

a) Compute the specific heat as a function of temperature.
b) Sketch the temperature dependence of the specific heat for the case
hw, << i+ B << hw, << hw,
intherange 0 < I'< 2 A w;




Section 5 — Question 2

A Carnot engine that consists of a mono-
atomic ideal gas with particle number N,
is operating in a refrigerator mode in
between two thermal reservoirs at
temperature Ty and 77, (Ty> T}) as
shown in the accompanying pressure-
volume diagram. The engine first makes
an isothermal compression of volume
from Vy to Vy -AVy at temperature 1y,
followed by the adiabatic volume
expansion from Vy -4V to V. Then the

7, -av, v
¥

L

engine undergoes an isothermal expansion from ¥y to ¥, +4V; with the
temperature held at 7}, followed by an adiabatic compression from ¥V +AV, to V,

which completes a cycle of refrigeration.

a) Show that:

Vy —AV, vy

3
vV, @V, +AV, _(TH 2

b) Express the total work applied to this Carnot engine during a cycle of
refrigeration in terms of N, Ty, T;, V1, and AV, only. Note that the work
done by the engine during two adiabatic processes cancels each other.

¢) Find the amount of heat removed from the thermal reservoir at 7; during a

cycle.

- d) Now, let us assume that the lower temperature thermal reservoir consists of
an ideal gas with the particle number N;. Since the size of this reservoir is
finite, the temperature 7; is decreasing every refrigeration cycle. Assuming
N AV, __,, show that the temperature of the lower thermal bath after m

L Y

Carnot cycles is given by: T, (m)=T,(0)e™", where o ==

2 N, AV,
N, V,




Section 5 — Question 3

A system of N non-interacting, spin ¥ particles is described by the Hamiltonian:
H=-pBS.o;
i=1

where G;” is the z-Pauli matrix associated with particle i:
. (1 0
(¢} P = .
0 -1

a) Calculate the internal energy of the system when it is in thermal
equilibrium at field B, > 0 and temperature 7.

b) Calculate the change in internal energy (with respect to part a) when the
system is maintained in thermal equilibrium at temperature 7, and the field
is decreased to a value B, such that B, > B,>0.

c¢) Calculate the change in internal energy (with respect to part b) when the
system is thermally isolated (decoupled from the reservoir) and the field is

increased back to B,.

d) Calculate the change in internal energy (with respect to part ¢) when the
system is reconnected to the thermal reservoir and allowed to re-
equilibrate.




Section 5 — Question 4

A mono-atomic gas is described by the equation of state P(V — bn) = nRT.

a)
b)

d)

What is the maximum density to which the gas can be compressed ?

What is the physics interpretation of the constant b and what property of
the atoms can we infer from b ? Give an expression for this property in
terms of b and other relevant constants.

Suppose the gas has a pressure P; at volume V; = R;bn, with R;>> 1. Now,
suppose the gas is compressed isothermally to a volume V;= 2bn. Estimate
the additional amount of worked needed to compress this gas compared to
a gas satisfying the usual ideal gas equation of state. Express your answer
in terms of the given constants and any other relevant numerical
eXpressions.

Now, suppose the gas is expanded adiabatically back to its original volume,
V;. Calculate the ratio of the temperature for this non-ideal gas to that we
would obtain from an ideal gas under the same circumstances.




Section 5 — Question 5

Consider a closed system of N spins in a magnetic field, B. Suppose N/2+s of the
spins are “up”, N/2—s of the spins are “down” and that the magnetic energy is:

U=-2mBs.
a) Give the entropy of the system as a function of U.

b) Give the temperature of the system as a function of N and U.

You may wish to use
Nl= m_eNlnN—N
and the fact that the total number of states in the configuration above is
N!
g(N.5)= N2 +35) (N2 —5)!




Section 5 — Question 6

Consider an ideal gas composed of N He® atoms contained in a vessel of volume V.
He’ isotopes have two protons and one neutron in their nuclei. He® atoms have spin
Y. Describe the kinetic energy states of the He® atoms as quantization in a box for

a cube of volume ¥ = L*, where L is the length of the cube. Assume, for simplicity,

that the system remains gaseous at all temperatures.

Consider the limit of absolute zero of temperature (7 = 0).
a) What is the difference between the lowest and highest energy states of

single He’ atoms.

b) Obtain an expression for the total kinetic energy as function of N and V.

c) What would be the total kinetic energy for a gas composed of He* atoms?

Now assume that the temperature is raised slightly so that 7 remains small.

d) The kinetic energy of the He’ ideal gas is written as U(T) = U(0) + AU(T).
Show by qualitative considerations that the leading term in AU(T) is
proportional to 7°.
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A quantum gas of N independent, 3D, spin-1, anisotropic oscillators have a
Hamiltonian:
pl 1 2.2 1.2 2.2 '(I)'V/m‘/ _— P
H=E—H7+5(\4';x' +wyyT +\4'§z“)——u-B oq- £

where 1t is the magnetic dipole moment and B is a uniform magnetic field in the z-
direction.

a) Compute the specific heat as a function of temperature.
b) Sketch the te nperature dependence of the specific heak for the case
nw, << /8 < W, << M, a

in the range 0 <7 <2 A wjs,
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Thermodynamics (heat engine):

A Camnot engine that consists of a monantomic ideal gas with the particle number N, is
operating in a refrigerator mode in between two thermal reservoirs at temperature 7 and
T, (T > T.) as shown in the pressure-volume diagram shown in the below. The engine
first makes an isothermal compression of volume from Vy to Vy -AVy at temperature Ty,
followed by the adiabatic volume expansion from Vy -AVy to V. Then the engine
undergoes an isothermal expansion from ¥ to V; +AV; with the temperature holds at 7},
followed by an adiabatic compression from V; +A4V} to Vy, which completes a cycle of
refrigeration.

[ R R led bkl

Tt - - .- -
-t

..... Pooar, ! 18
b, V,+AV,
(a) Show that
3
Ve ¥V +Av, (T, )
V,—AV, v, T,

(b) Express the total work applied to this Carnot engine during a cycle of refrigeration in
terms of N, Ty, T, V; and AV, only. Note that the work done by the engine during two
adiabatic processes cancels each other.

(c) Find the amount of heat removed from the thermal reservoir at 7, during a cycle.

(d) Now, let us assume that the lower temperature thermal reservoir consists of an ideal
gas with the particle number N;. Since the size of this reservoir is finite, the temperature
Ty is decreasing every refrigeration cycle. Assuming V. 8%, __;, show that the
L L
temperature of the lower thermal bath after my, Carnot cycles is given by:
T,(m)=T,(0)e™ , where o = >N AV,
3N, ¥,
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Thermodynamics — Canonical Ensembles (?)

Non-ideal gas

A mono-atomic gas is described by the equation of state P(V —bn) =nRT .

a)
b)

¢)

d)

What is the maximum density to which the gas can be compressed ?

What is the physics interpretation of the constant b and what property of the
atoms can we infer from b ? Give an expression for this property in terms of b and
other relevant constants.

Suppose the gas has a pressure P, at volume V, = R,bn with R, >>1. Now,

!

suppose the gas is compressed isothermally to a volume V', = 2bn . Estimate the

additional amount of worked needed to compress this gas compared to a gas
satisfying the usual ideal gas equation of state. Express your answer in terms of
the given constants and any other relevant numerical expressions.

Now, suppose the gas is expanded adiabatically back to its original volume V..
Calculate the ratio of the temperature for this non-ideal gas to that we would
obtain from an ideal gas under the same circumstances.
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Non-ideal gas
A mono-atomic gas is described by the equation of state P(V —bn) = nRT .

Q E a) What is the maximum density to which the gas can be compressed ?
b) What is the physics interpretation of the constant b and what property of the
3 w Z atoms can we infer from b ? Give an expression for this property in terms of b and
other relevant constants.
5 c) Suppose the gas has a pressure P, at volume V; = R,bn with R, >>1. Now,

suppose the gas is compressed isothermally to a volume ¥, = 2bn. Estimate the
additional amount of worked needed to compress this gas compared to a gas
satisfying the usual ideal gas equation of state. Express your answer in terms of
‘ the given constants and any other relevant numerical expressions.
5‘ g d) Now, suppose the gas is expanded adiabatically back to its original volume V.
Calculate the ratio of the temperature for this non-ideal gas to that we would
obtain from an ideal gas under the same circumstances.
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General: particle statistics/thermal effects

d of N He® atoms contained in a vessel of volume V. He’

isotopes have two protons and one neutron in their nuclei. He’ atoms have spin "2.
Describe the kinetic energy states of the He® atoms as quantization in a box for a cube of
volume V=L>, where L is the length of the cube. Assume, for simplicity, that the system

remains gaseous at all temperatures.

Consider an ideal gas compose

(a) Consider the limit of absolute zero of temperature (T=0).
(i) What is the difference between the lowest and highest energy states of single
He® atoms.

(ii) Obtain an expression for the total kinetic energy as function of Nand V.

(iii) What would be the total kinetic energy for a gas composed of He* atoms?

(b) Assume that the temperature is raised slightly so that T remains small. The
kinetic energy of the He” ideal gas is written as U(T) = U(0) + AU(T). Show by
qualitative considerations that the leading term in AU(T) is proportional to T2
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Columbia University
Department of Physics
QUALIFYING EXAMINATION
Thursday, January 13, 2005
11:10 AM -1:10 PM

General Physics (Part II)
Section 6. Fluids, Optics and General

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 7 included in this section. (You will not earn extra
credit by doing additional problems). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 6 (General Physics),
Question 3; Section 6(General Physics) Question 6, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single note sheet on 8 %2 x 11” paper (double-sided) you have
prepared on General Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam.
Please include your Exam Letter Code on your note sheet. No other extraneous
papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted. Questions should be
directed to the proctor.

Good luck!!




Section 6 — Question 1

Choose one colloquium given this semester that particularly interested you and that
had direct relevance to a physics topic. Briefly describe the topic of this
colloquium. Be sure to mention why this topic is important within the context of
our current understanding of physics and how the progress described in the
colloquium advances that understanding.

Answer in no more than two pages of the blue-book.




Section 6 — Question 2

Consider a cube with refraction index 7 > V2 in the air. Suppose that radiation is
emitted isotropically and uniformly at each point inside the cube.

Find the fraction, f, of radiation that will escape the cube.




Section 6 — Question 3

Suppose that a distant planet were to be discovered with an atmosphere consisting
solely of hydrogen atoms in their ground states. The atmosphere’s number density
(n) and scale height (H) are such that a significant fraction (f) of the incident light
from the planet’s sun is scattered in the atmosphere before reaching the ground.

a) Very roughly, what is the fraction, f'?
Assume incident solar light has a wavelength, A; = 21 x 107° cm,

¢*/he = 1/137 and the Bohr radius #%/me” ~ 5x107% cm.

b) Ifthe planet’s surface were a perfect absorber of all solar light that reaches
it, what color planet would we see from a satellite above it? Why?




Section 6 — Question 4

A very large sphere of radius, R is uniformly filled with a very hot, fully ionized
hydrogen plasma: N electrons, N protons and kg7 >> &*m/H.

a) Very roughly, how long would it take for an energetic photon to get from
the center of the sphere to the surface, a distance R away?

b) Very roughly, what is the electrical conductivity, o, inside the sphere and
how does it depend on the electron number density, N/R® ?

Remember: j=oc,E.




Section 6 — Question 5

Consider a one dimensional system in a solid. The lattice constant, i.e. the distance
between adjacent atoms, is a. Each atom contributes one electron to the
conductions band and each electron has spin =2 .

a)

b)

Obtain the Fermi energy and Fermi momentum of the conduction electron
system, based on an approximation that each electron is free (the free
electron gas model).

If we introduce a periodic potential, which has minima at the atomic
positions, and maxima halfway between the atoms:
U=-U, 008(272'-{)

a
with the atoms at x = 0, +a, £2a, ..., then the parabolic energy dispersion of
a free electron is changed. Provide a qualitative drawing of that energy
dispersion in the first Brillouin zone, taking into account the effect of the
periodic potential. Draw a graph of energy vs. momentum.

The maximum energy change (from the parabolic free electron dispersion)
would occur for electrons having momentum k = +2n / 2a (at the zone
boundary). Obtain the amount of the energy change, AE, for such an
electron in terms of the potential, U,.




Section 6 — Question 6

The one-dimensional metal system, with a periodic potential, described in the
previous problem is unstable against dimerization of adjacent atoms at low
temperatures. This phenomenon is called the Peierls transition.

a) Provide a brief description of the origin of this instability.

b) There are signatures in lattice and electron systems reflecting Peierls
transitions. Describe one experimental measurement for a lattice system
and another one for an electron system that detect Peierls transitions. What
kind of change in each measurement would you expect between the cases

with/without Peierls transitions?




Section 6 — Question 7

i A :
3 I 3 plastic
R Ve

plane wave

A
slit 4 I / 2 plastic .-

>
slit 3 I / 1 plastic -

AY
U32I38

_____________________________

Consider the Frauenhofer (far field) diffraction of a monochromatic plane wave
(wavelength A) that is normally incident on a very large number of slits, as shown
in the diagram above. Each slit is very long (length L perpendicular to the plane of
the diagram) and has the same very narrow width. (Assume that this width is
negligibly small). Adjacent slits are separated by the same distance, d.

Consider tiny pieces of transparent plastic which are placed right in front of each
slit. Each piece of plastic decreases the intensity of an incident wave by a factor, 4
(4 < 1) and shifts the phase of the incident wave by an angle ¢. The bottom-most
slit (slit 1) has no plastic in front of it. The next slit (slit 2) has one piece of plastic
in front of it; slit 3 has two pieces of plastic in front of it; and so on. In general, slit
N has (N — 1) pieces of plastic in front of it. For this problem, you may assume that
there are essentially an infinite number of slits.

The incident wave passes through all of the slits to a distant observing screen. Find
the intensity of this diffracted wave at the observing screen as a function of the
angle 0 shown in the diagram. Plot the intensity as a function of sin6 and clearly
indicate the angles for which the intensity is a maximum.
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Relativity
Problem 1.

A Martian physicist k
q at rest is subject to

ws electricity, in particular, Gauss’s law and the experimental fact that a charge
ce gF where FE is the local clectric field. He has not discovered magnetism
ted in relativity. How can he calculate the force acting between two neutral
straight long wires A and R bearing equal currents I?7 The distance betwen the wires d is given and
one necds to find the force A per unit length of the wire. [Hint: f doesn’t depend on what particles
carry the current and their velocity in the wire. The Martian physicist can assume, for instance, that
the negative charges are at res\ in the lab frame, v_ = 0, and the positive charges carry the current

yet, however, is well educd

with a velocity v..]
Solution: The net force acting dp, e.g., wire 4 is the sum of forces acting on its + and — charges
E = 0 in the lab frame (the wires \re neutral), so the force acting on the non-moving (—) charges is
zero. The challenge is to calculate the force acting on the moving (-+) charges. The Martian physicist
can do that in the rest frame F of thé charges and needs to find the electric field E created by wire B

in frame F. The field is created because wire B has a line charge density A # 0 in frame F:

A = Ay — A_, where . are the link charge densities of the * charges. They are related to the

1 vy
where 7_——1—:—[)’—2’ ﬁ_—c_'
lab = A lab, one finds
2
~-1) I I
O -1 g
B

" This force is measured in frame F. It remains the same after trynsformation to the lab frame, which can

be seen from the fact that ~ did not enter the expression for f.\JFormal proof: Lorentz transformation
of 4-force dp”/ds = (0,0, f.0) to the lab frame gives dpf{',/ds =X0,0. f,0), and hence fi., = f.]
Problem 2.

Consider a cube with refraction index n > v/2 in the air. Suppose radiation is emitted isotropically
and uniformly at each point inside the cube. Find the fraction f of radiation that will escape the cube.
Solution: The cube has six faces with normals +e,, +e,, and +e,. A light ray propagating in a
direction k will escape through faces +e, if |k-e.| > v1 — n~2, through faces e, if |k-ey| > V1 - n=2,
and through faces te; if |k -e,| > V1 — n=2. On the unit sphere |k| = 1 there are six regions defined
by these three conditions, which do not intersect (since n > V2) and occupy the total solid angle

Qgsc = 6 x 277 (1 V1= n-2) .
The escaping fraction of radiation is given by

f=%=3(l~ 1—71”2).
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Soluhon

January 12, 2005

Solutions:

Section 6, Question 5, 1-d metal, Tomo Uemura.

a)

periodic boundary condition. lattice constant a. length L. Ak = 2n/L. Suppose we fill
up to the Fermi momentum +kp. Number of states within the Fermi momentum, with
spin up/down digeneracy: N = 2(spin) x 2kp/Ak = 4kpL/2%. This equals to the number
of conduction electron N = L/a. Thus kr = (1/4) x (2r/a); i.e., a half way to the zone
boundary 27/2a. Fermi energy ep = h’k%/2m.

b) The periodic potential with the periodicity of the lattice constant would modify the
parabollic dispersion, and create the energy gap at the zone boundary kzp = 27/2a. See
Figure 1.

c) This potential would act to the wave functions at the zone boundary exp(ikzpz) and
exp(—ikzpz), mix them, leading to ¢.,s = cos(kzpx) which has the maximum amplitude
at the atomic position z = 0 and ¢, = sin(kzpz) which has the minimum amplitude
at the atomic position. The charge density would be ¢?, which is a sinusoidal function
having periodicity of 2kzp = 27 /a. The periodic potential has the same periodicity as the
charge density, with the full amplitude U,. Multiplying the charge density and the periodic

. botential, integrating over the Brillouin zone, would give the energy saving of U,/2 to the

cosine wave, and energy increase of the same amount to the sine wave. Thus AE = +U,/2
at the zone boundary. See Figure 2.
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Consider the Frauenhofer (far field) diffraction of a
monochromatic plane wave (wavelength A) that is normally-incident
on a very large number of slits, as shown in the diagram. Each
slit is very long (length L perpendicular to the plane of the
diagram) and has the same very narrow width. (Assume that the
slits’ widths are negligibly small.) Adjacent slits are
separated by the same fixed distance d. Consider tiny pieces of
plastic which are placed right in front of each slit. Each piece
of plastic decreases the intensity of an incident wave by the
factor A (A < 1) and shifts the phase of an incident wave by
phase angle ¢. The bottom-most slit (slit number 1) has no

plastic in front of it. The next slit (slit number 2) has 1
piece of plastic in front of it. The next slit (slit number 3)
has 2 pieces of plastic in front of it. In general, slit number

N has (N-1) pieces of plastic in front of it. For this problem,
you may assume that there are essentially an infinite number of
slits present. The incident wave passes through all of the
slits, and the resulting diffracted wave then travels from the
slits to a distant observing screen. Find the intensity of this
diffracted wave at the observing screen as a function of the
angle @ shown in the diagram. Plot the intensity as a function
of sin@, and clearly indicate the angles for which the intensity

is a maximum.
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Tomo Uemura
? eneval IE
Problem I.

Solid State Physics:
Re: l-dimensional metal, band-gap for periodic potential, and Peierls

transition

Problem:
We consider a one dimensional system of solid. The lattice constant,
i.e., the distance of adjacent atom, is $as.

Fach atom contributes one electron to conduction band.
Fach electron has spin S = 1/2.

(1) Obtain Fermi energy and Fermi momentum
of the conduction electron system, based on an approximation
that each electon is a free electron (free electron gas model) .

(2) If we introduce a periodic potential, which has a minimum at the
atomic position, and maximum in the center of the adjacent atoms,

such as
$SU = - cos(2\pi x/a)$$ (for the position of atom at x = 0, a, Z2a,

a, —2a, ...}
then the parabolic energy dispersion of a free electron 1s changed.
Provide a qualitative drawing of the energy dispersion of electrons
in the first Brillouin zone taking into account the effect of this

periodic
otential. Draw a graph of ener versus momentum.
p gy

(3) The maximum energy change {from the parabolic free electron

dispersion)
would occur for electrons having momentun
of Sk = +/- 2\pi / 2a$ {at the zone boundary). Obtain the amount of

the energy change for such an electron. Give an answer in a way such

as
$\Delta E$ = U/5 or 10 U or

{4) Such a one-dimensional metal system is unstable against dimerization
of
adjacent atoms at low temperatures. This phenomenon is called

Peierls transition.
Provide a brief desctription of the origin of this instablility.

(5) There are signatures in lattice system and electron system
reflecting

Peierls transition.
lattice

system, and another one for the electron system, which detect
Peierls

transition.
expect

between the cases with/without Peierls transition ?

Describe one experimental measurement for

What kind of change in each measurement would you




