Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 12, 2005
9:00 AM -11:00 AM

Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. (You will not earn extra
credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 3 (QM), Question 1;

Section 3(QM) Question 5, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single note sheet on 8 %4 x 11” paper (double-sided) you have
prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam.
Please include your Exam Letter Code on your note sheet. No other extraneous

papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Section 3 — Question 1

a)

b)

Consider a 1-dimensional delta function potential well, ¥ (x)=—a¥, 8(x),

where a and ¥ are positive constants in this problem. A point particle of
mass m is bounded in this potential. Show that there is only one bound state
in this potential, and find the binding energy and the wavefunction of this

bound state.

Now, consider two symmetric delta function potential wells,
V(x)=-aV,[5(x + a)+ 8(x — a)]. Employing only a symmetric argument
without solving the Schroedinger equations for this potential, guess the
ground state wavefunction and first excited state wavefunction from the
wavefunction obtained in a). It is not required to normalize wavefunctions
in this problem.

Let 2= ﬂzzﬁaz . Assume A << 1, find the energy of ground state in b) up to

the correction term to the answer you obtained in a).




Section 3 — Question 2

Two electrons are bound by a spherically symmetric potential, are in the same
radial state, and each have total angular momentum € = 1. Spin-orbit coupling may

be neglected.

For parts a) and b), assume that the two electrons are in the spin singlet state.
a) If the total orbital angular momentum, L,,> = (L; + L,)’, is measured, what

values could be obtained?

b) Give the angular wave functions and degeneracies for all states found in a).
You may express the answers in terms of angular harmonics, Y;,,, which

you do not need to write explicitly.

For parts c) and d) assume that the electrons are in a spin triplet state.
¢) Repeat part a).

d) Repeat partb).




Section 3 — Question 3

Muonic atoms are formed when a muon stops in a material and gets "captured"” into
an atomic state. These muons can then be absorbed by the nucleus through a
process that is essentially inverse beta decay (but with a muon being absorbed
instead of an electron). We will suppose that a muon is captured in a homogenous
material composed of an element with atomic number Z and atomic mass 4 (4 >>
1). Neglect the finite size of the nucleus. You may need the muon mass (rest
energy), mluc2 ~ 106 MeV, electron mass, mec® ~0.511 MeV, and nucleon mass
mnc® ~ 940 MeV. You may also find it convenient to use zc ~ 200 MeV fm.

a) We can estimate the most likely principle quantum number of the orbital
into which the muon gets captured by assuming that the muon ejects the
most energetic electron from the atom and occupies a state of comparable
energy. Estimate n for the muon capture state using this assumption.

b) The muon will continue to de-excite by ejecting electrons from the atom
(thus producing so-called "Auger" electrons) and emitting x-rays. Estimate
the energy of the most energetic x-ray that can be emitted by the muon. If
the radius of a nucleus with mass number 4 is, R ~ (1.2 fm)4"”, comment
on the validity of neglecting the nuclear size.

c) The absorption of the muon by the nucleus proceeds almost exclusively
from S states. Explain why this is so.

d) If we assume that the matrix element and phase space factors are
approximately the same for the capture of muons and electrons on nucleons
(a crude approximation), estimate the ratio of the probabilities for the muon
and electron to be absorbed from an n=1 atomic state, i.e. calculate

P(u-capt) / P(e-capt).




Section 3 — Question 4

Consider a Hamiltonian, H = H, + V(¢), where (for ¥}, a constant operator)
V)=V, for0<¢<T, and
=0 otherwise.

We label the eigenstates and eigenvalues of H, as |m) and E,, respectively. That is:
H0|m> = Em|m>

Suppose |w(r)) is the state of the system. If |y(¢)) =|m) for # <0, what is |<n|\|l(t)>|2

for t > T when n # m?

You may work to lowest non-trivial order in V.




Section 3 — Question 5

Consider the Stark effect of an electric field applied to a hydrogen atom in the
ground state (1S). In the following, define the x-axis to be the direction of the
electric field.

a) First calculate this effect classically. Suppose the atom is composed of a
positive charge, e, at the origin (» = 0) and a negative charge, —e, uniformly
distributed throughout a sphere of radius a. Application of the electric field,
E, will create a dipole moment by shifting the position of the center of the
negatively charged sphere by a distance x from the positive charge.
Calculate the magnitude of the electric dipole moment, p. = e x, and the
polarizability, o = WE, of the atom under these conditions.

b) Now calculate the dipole moment and polarizability quantum
mechanically, using the true electron wavefunction. Include the effect
from the n=2 levels (2s and 2p) only, and forget about effects fromn =3
and higher levels.

Hint: Obtain the energy change using perturbation theory, then equate this
energy with the work that the field, E, does in moving the electron cloud from r
=0tor=xX.

You may use the mathematical results given below.

c) Describe how this calculation can be checked experimentally. How can we
measure the energy change calculated in part b)?
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Quantum Mechanics (potential problem):

(a) Consider a 1-dimensional delta function potential well, ¥ (x) = —a¥, 5(x), where a
and V) are positive constants in this problem. A point particle of mass m is bounded in -
this potential. Show that there is only one bound state in this potential, and find the
binding energy and the wavefunction of this bound state.

(b) Now, consider two symmetric delta function potential wells,
V(x)=-aV,[6(x+a)+5(x - a)]. Employing only a symmetric argument without
solving the Schroedinger equations for this potential, guess the ground state wavefunction
and first excited state wavefunction from the wavefunction obtained in (a). It is not
required to normalize wavefunctions in this problem.

2mV,

hZ

(c)Let A= a’ . Assume A << 1, find the energy of ground state in (b) up to the

correction term to the answer you obtained in (a).
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Solutions:

Section 3, Question 5, Stark Effect, Tomo Uemura.

a)
Suppose the center of the negatively charged cloud moved by the distance x from the nucleus.
The nucleus would be attracted by the negative charge within the radius x of the negatively

charged ball. The charge within this area is —ex3/a3. The attraction force acting upon the
nucleus is €2 x (23/a3) x (1/z?) = e?x/a®. This force is balanced by the electric field force

eE. This leads to 4 = ez = a3F and o = u/E = a®.
b)

Using perturbation: V = —eEz. The first order energy change is zero, since —eE < 1s | z |
1s >= 0. Among terms for the second order energy change, we note that < 1s | z | 2p, >= 0,
and < 1s | z | 2s >= 0. As given in the question sheet, < 1s | z | 2p+ >= (27/3%) x a,.
Thus, the second order energy change becomes

—>[(eE)? < 1s |z | 2px >]/[Eop — Fr] = —(28/3M)a2E? = —1.4843E?

By the electric field E, the electric cloud moves z = (a/e)E. The work done by the electric

field is i .
- /0 eEds = — /0 (€2/a)zdz = —(e2/20)2? = —(a/2) E?

. This work equals to the second order energy change. Therefore, a = 2.96a3.

c)

Measure the atomic spectral line as a function of electric field.
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Section 3 — Question 3

Muonic atoms are formed when a muon stops in a material and gets "captured" into
an atomic state. These muons can then be absorbed by the nucleus through a
process that is essentially inverse beta decay (but with a muon being absorbed
instead of an electron). We will suppose that a muon is captured in a homogenous
material composed of an element with atomic number Z and atomic mass 4 (4 >>
1). Neglect the finite size of the nucleus. You may need the muon mass (rest
energy), m“c2 ~ 106 MeV, electron mass, m.c* ~ 0.511 MeV, and nucleon mass
mne’ ~ 940 MeV. You may also find it convenient to use /¢ ~ 200 MeV fm.

a) We can estimate the most likely principle quantum number of the orbital
UF into which the muon gets captured by assuming that the muon ejects the
most energetic electron from the atom and occupies a state of comparable
energy. Estimate n for the muon capture state using this assumption.

(J b) The muon will continue to de-excite by ejecting electrons from the atom
‘ (thus producing so-called "Auger" electrons) and emitting x-rays. Estimate
the energy of the most energetic x-ray that can be emitted by the muon. If
the radius of a nucleus with mass number 4 is, R ~ (1.2 fm)4'”, comment
on the validity of neglecting the nuclear size.

3 c) The absorption of the muon by the nucleus proceeds almost exclusively
from S states. Explain why this is so.

d) If we assume that the matrix element and phase space factors are
L,% approximately the same for the capture of muons and electrons on nucleons
(a crude approximation), estimate the ratio of the probabilities for the muon
and electron to be absorbed from an n=1 atomic state, i.e. calculate

P(p-capt) / P(e-capt).
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Muonic Atoms

Muonic atoms are formed when a muon stops in a material and gets “captured” into an
atomic state. These muons can then be absorbed by the nucleus through a process that is
essentially inverse beta decay (but with a muon being absorbed instead of an electron).
We will suppose that a muon is captured in a homogenous material composed of an
element with atomic number Z and atomic mass A, A >> 1. Neglect the finite size of the

nucleus. You may need the muon mass (rest energy), m ﬂcz ~ 106 MeV , electron mass,

m,c? ~0.511 MeV , and nucleon mass myc’ ~940MeV . You may also find it

convenient to use 1 = 200 eV nm = 200 MeV fm.

a) We can estimate the most likely principle quantum number of the orbital into which
the muon gets captured by assuming that the muon ejects the most energetic electron
from the atom and occupies a state of comparable energy. Estimate # for the muon
capture state using this assumption. '

b) The muon will continue to de-excite by ejecting electrons from the atom (thus
producing so-called “Auger” electrons) and emitting x-rays. Estimate the energy of
the most energetic x-ray that can be emitted by the muon. If he radius of a nucleus

with mass number A is R = (1.2 fm)4"”* comment on the validity of neglecting the
nuclear size.
¢) The absorption of the muon by the nucleus proceeds almost exclusively from S states.

Explain why this is so.

d) If we assume that the matrix element and phase space factors are approximately the
same for the capture of muons and electrons on nucleons (a crude approximation),
estimate the ratio of the probabilities for the muon and electron to be absorbed from

capt
an n=/ atomic state (i.e. calculate ~# /m,am ).
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Columbia University
Department of Physics
QUALIFYING EXAMINATION
Wednesday, January 12, 2005
11:10 AM - 1:10 PM

Modern Physics
Section 4. Relativity and Applied Quantum
Mechanics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. (You will not earn extra
credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 4 (Relativity and
Applied QM), Question 2; Section 4(Relativity and Applied QM) Question 3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single note sheet on 8 2 x 11” paper (double-sided) you have
prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam.
Please include your Exam Letter Code on your note sheet. No other extraneous
papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Section 4 — Question 1

A proton of mass m (0.938 GeV) and energy E collides with a stationary free
proton and produces a proton-antiproton pair.

a)

b)

ptrp—>ptptp+tp

Show that the threshold energy for this process to take place is 7m (6.57
GeV).

Experimentally, the threshold energy using a copper target is found to be
5.21m (4.89 GeV) due to the Fermi motion of the target protons inside the
copper nucleus. From this value, what is the maximum Fermi momentum
in the copper nucleus? (You can assume that the Fermi momentum is

small compared to the proton mass.)

From what you know about protons in a copper nucleus (Z=29, 4=63),
show that this is a reasonable result, i.e. derive the value of the Fermi
momentum and show that it agrees with the value in part b).




Section 4 — Question 2

A beam of visible photons can be scattered by a relativistic electron beam to

produce an intense beam of gamma-rays. Analyze this process assuming,
E,=2eV,KE(e)=6x10°¢eV,

and that the collisions are collinear in the lab frame as shown below.

Laboratory Frame
1

1
: 1
1

before I after

a) In the rest frame of the electron beam, what is the energy of the incoming
photon beam?

b) The photons are reflected backwards in the lab frame as shown above.
What 1s the energy of the reflected photons in the lab frame?




Section 4 — Question 3

Meson factories produce secondary ©'-meson beams from collisions of high
energy protons with nuclear targets. The n'-meson decays in flight mainly through

the channel n° — p* + v,

a) Without approximation, derive formulas for the muon and neutrino
energies, £, and E,,, in the pion’s rest frame, in terms of the pion and muon
masses (neglect the neutrino mass).

b) The n" has spin zero. What is the angular distribution of the " in the
pion’s rest frame?

¢) What is the range of possible energies of the muon, £/, in the laboratory
frame? To what physical situations do the maximum and minimum values
correspond?

d) Making use of your results in parts b) and c), obtain the probability
distribution, P(E;), of the p* energy in the laboratory frame in terms of the

pion and muon masses and the pion’s Lorentz factors.




Section 4 — Question 4

Derive Einstein’s famous formula, E = m ¢* (i.e. that mass is a form of energy)

from the requirements that:
1. momentum conservation in collisions works independent of the inertial

reference frame from which the collision is observed, and
2. velocity transforms between reference frames follow the relativistic (rather

than the Galilean) form.

For simplicity, consider two-body collisions in one dimension, but allow the
outgoing pair of particles to be different than the incoming pair. You may also
work to lowest, non-trivial, order in v/c.

Note: following Einstein, you will have to modify the definition of several classical
variables in order for this to make sense. Be sure to specify clearly which variables
are getting new, relativistic definitions.




Section 4 — Question 5

In the laboratory frame, a charge, g, moves at a velocity, v << ¢, parallel to a wire
carrying a current, /, and zero net charge density. The conduction electrons in the

wire move at a velocity, w << c.

Show that, for the frame where the charge, g, is at rest, the wire appears to have a
net charge density vw/c” times the charge density of the conduction electrons in the

wire and that this explains the magnetic force on gq.




z
%
=

T

Relativity Problem

¢ 7’—‘"
2085 S echm 4 -
Eslah vity ioa
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A proton of mass m (0.938 GeV) and energy E collides with a stationary free proton and
produces a proton-antiproton pair.

a)
b)

Pptp—>pt+tpt+tpt+p
Show that the threshold energy for this process to take place is 7m (6.57 GeV).

Experimentally, the threshold energy using a copper target is found to be 5.21 m
(4.89 GeV) due to the Fermi motion of the target protons inside the copper
nucleus. From this value, what is the maximum Fermi momentum in the copper

nucleus? (You can assume that the Fermi momentum is small compared to the
proton mass.)

From what you know about protons in a copper nucleus (Z=29,A=63), show that
this is a reasonable result, i.e. derive the value of the Fermi momentum and show
that it agrees with the value in part b).
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Qualifying exam
Lagrangian mechanics and relativity
Eduardo Pont6n

MechankS

1. Consider a’gendulum built from a mass m attached to one
end of a masslegs, extensionless string, whose other end is
attached to the upRermost point of a vertical disk of radius
R, as shown in the re. Assume that the total length of
the string is [ and that <.

(a) Find the equations of Mqtion in terms of the angle 6

as shown in the figure.

(b) What is the equilibrium angle ¥? Find the frequency
of small oscillations about this pdsjgon.

Prlativi fg
2. Meson factories produce secondary n¥-meson beams from collisions of high energy protons
with nuclear targets. The 7% -meson decays in flight mainly through the channel 7t —

pt o+ Vy.

(a) Without approximation derive formulas for the muon and neutrino energies, E, and
E,, in the pion’s rest frame, in terms of the pion and muon masses (neglect the

neutrino mass).

(b) The 7" has spin zero. What is the angular distribution of the x* in the pion’s rest
frame?

(c) What is the range of possible energies of the muon, £/, in the laboratory frame? To
what physical situations do the maximum and minimum values correspond?

(d) Making use of your results in parts (b) and (c) obtain the probability distribution
of the laboratory u* energy.

.
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Quals Relativity Exam Problems
December 2004

Robert Mawhinney

In the laboratory frame, a charge g moves at a velocity v < ¢ parallel
to a wire carrying a current I and zero net charge density. The conduction
electrons in the wire move at a velocity w < c. o

Show that, for the the frame where the charge g is at rest, the wire appears
to have a net charge density vw/c? times the charge density of the conduction
electrons in the wire and that this explains the magnetic force on gq.
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