Columbia University
Department of Physics
QUALIFYING EXAMINATION
Monday, January 10, 2005
9:00 AM -11:00 AM

Classical Physics
Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. (You will not earn extra
credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 1 (Classical
Mechanics), Question 1; Section 1(Classical Mechanics) Question 3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single note sheet on 8 %4 x 11” paper (double-sided) you have
prepared on Classical Physics. The note sheet cannot leave the exam room once
the exam has begun. This note sheet must be handed in at the end of today’s exam.
Please include your Exam Letter Code on your note sheet. No other extraneous
papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor. \.

Good luck!!




Section 1 — Question 1

A stick of uniform density, mass, M, and length, L is constrained to move such that
its ends rest on the inside of a fixed vertical, circular ring of radius R, as shown

below.

p V1 of

Nl

Find the frequency for small oscillations about the stick’s equilibrium position.

You can neglect friction between the stick and the ring.




Section 1 — Question 2

Consider a pendulum built from a mass m attached to one end of a massless,
extensionless string, whose other end is attached to the uppermost point of a fixed,
vertical disk of radius R, as shown in the figure below. Assume that the total length

of the string is / and that 7R < /.

a) Find the equations of motion in terms of the angle, 6, as shown in the
figure.

b) What is the equilibrium angle, 6,?

c) Find the frequency of oscillations about the equilibrium angle.




Section 1 — Question 3

A uniform rectangular object of mass m with sides a and b (b > a) and negligible
thickness rotates with constant angular velocity @ about a diagonal through the
center. (For this problem, ignore gravity.)

Q)

b

a) What are the principle axes and moments of inertia?
b) What is the angular momentum vector in body coordinate system?

¢) What external torque must be applied to keep the object rotating with
constant angular velocity around the diagonal?




Section 1 — Question 4

A chain with uniform mass density p (per unit length) hangs between two points
on two walls as shown below. Assume that these two points are level.

y

(a) Find the shape of the chain. Apart from an arbitrary additive constant, the
function describing the shape should also contain an unknown constant.

(b) Find an equation for this unknown constant in terms of the length / of the
chain and the separation d between the walls.




Section 1 — Question 5

The gravitational potential near a black hole of mass, M and Schwarzschild radius,
a can be described by a modified classical potential:

)= M

(r-a)

a) Find an expression for the force acting on a particle of mass, m in this
gravitational potential.

b) Expand your answer from part a) to find the lowest order correction to the
classical gravitational force when the test particle is at a distance from the
black hole large enough to satisfy the condition, a / r << 1.

c) Develop a solution for the orbital motion of a test particle near the black
hole using the force from part b) — just the classical and first order
correction terms. Express your answer in the form » = 7(8), where 0 is the
angle between a fixed axis and the radius vector to the particle, as shown
below.

You need only find the solutions periodic in 6.
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Lagrangian mechanics and relativity
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echanicS
1. Consider a pendulum built from a mass m attached to one
end of a massless, extensionless string, whose other end is
‘ attached to the uppermost point of a vertical disk of radius
5 R, as shown in the figure. Assume that the total length of
the string is [ and that 7R < L.

(a) Find the equations of motion in terms of the angle 4
as shown in the figure.

(b) What is the equilibrium angle 657 Find the frequency
of small oscillations about this position.
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2. \\Jeson Tactories produce secondary 7 meson beams from collisions of high energy protons
nuclear targets. The 7+-meson decays in flight mainly through the channel 7% —

(a) Withdyt approximation derive formulas for the muon and neutrino energies, F, and
E,, in the pion’s rest frame, in terms of the pion and muon masses (neglect the

neutrino
(b) The 7t has s
frame?

(c) What is the range oPgossible energies of the muon, E!, in the laboratory frame? To
what physical situatiomzdo the maximum and minimum values correspond?

parts (b) and (c) obtain the probability distribution

s zero. What is the angular distribution of the 4" in the pion’s rest

(d) Making use of your results
of the laboratory u* energy.
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Mechanics Problem M. Shaevitz

A uniform rectangular object of mass m with sides a and b (b > a) and negligible
thickness rotates with constant angular velocity o about a diagonal through the center.
(For this problem, ignore gravity.)

a) What are the principle axes and moments of inertia?
b) What is the angular momentum vector in body coordinate system?

c) What external torque must be applied to keep the object rotating with constant
angular velocity around the diagonal?
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Columbia University
Department of Physics
QUALIFYING EXAMINATION
Monday, January 10, 2005
11:10 AM-1:10 PM

Classical Physics
Section 2. Electricity, Magnetism & Electrodynamics

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 5 included in this section. (You will not earn extra
credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 2 (Electricity etc.),
Question 2; Section 2(Electricity etc.) Question 4, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code

You may refer to the single note sheet on 8 2 x 117 paper (double-sided) you have
prepared on Classical Physics. The note sheet cannot leave the exam room once
the exam has begun. This note sheet must be handed in at the end of today’s exam.
Please include your Exam Letter Code on your note sheet. No other extraneous

papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Section 2 — Question 1

A two dimensional box, 0 <x <L, 0 <y <L, is bounded by four conducting
plates. The potential boundary conditions are:

Vo (x/L)

$(0,) = $(x,0)= 0 L
¢(L’ y) = VO Z

L 0 Vo (VL)

X
D)7, 2

0 L
0

a) Determine ¢(x,y) everywhere in the box.

Draw qualitatively how equipotential and electric flux lines look like
inside the box.

b)




Section 2 — Question 2

A hollow sphere of radius R rotates about one of its diameters with an angular
velocity . Its surface is electrically charged with a charge density ©.

a) Determine the magnetic moment, m, of the sphere.

b) Find the magnetic field strength inside and outside the sphere as a function
of the distance, r, from its center.




Section 2 — Question 3

The speed of electrons undergoing cyclotron motion can be increased by increasing
the magnetic field causing them to move in a circle with time. This is the principle
behind a betatron. The electrons can be kept in an orbit of constant radius, R, in
this process if the magnetic field over the area of the electron’s orbit is non-

uniform.

Find the relationship between the field at the circumference of the orbit and the
average field over the orbit’s area that would be required to keep the electron at a

constant radius as it is accelerated.

Assume that the electrons start from rest in zero field, and that the apparatus is
symmetric about the center of the orbit.




Section 2 — Question 4

Consider a large region of space where the electric field, E(x,y,2) = [Ex E). E.;l=
[|E|, 0, 0], is constant and homogeneous. The effect of gravity can be neglected.

A point particle with mass, m, and positive charge, e, is accelerated by the electric
field. It moves through the origin at ¢, = 0. Its velocity vector, v, is known at this
point: v = [v, cosa, 0, v, sina], with v, << ¢ and cosa. > 0.

At some later time, ¢;; the distance, along the x-axis, between the particle and the
origin is L and the particle’s speed is still non-relativistic: vy<<c.

a) Estimate the total energy emitted, W, in the form of dipole radiation,
between £, and t;; as a function of the variables given above.

b) Describe and interpret the result.

Hint: one can approximate the power radiated by a dipole moment, p, in non-
relativistic situations, by the Larmor formula:

_U,p
6c




Section 2 — Question 5

A plane electromagnetic wave in vacuum is propagating in the positive z-direction.
The wave has a frequency o and its amplitude is being slowly decreased in time. In
particular, at z = 0 the amplitude is proportional to (1 — az) for time t=0to ¢ = 1/q,

with a/o << 1.

Consider an imaginary cylinder as shown below.

g I

z

0

Find the net, average outward energy flow per unit time from the cylinder and show that it equals
the rate at which the enclosed energy decreases with time.
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Radiation related problem

Consider a sufficiently large region in vacuum around the origin, where the
electric field ( E (x,y, z)=[Fz, Ey E: 1=1[1El, 0, 0]) is constant and
homogenous (i.e. far beyond the volume of interest). The effect of gravity can
be neglected.

A point particle with mass (11) and positive charge (¢) is accelerated by the
electric field, It moves through the origin at to=0. Its velocity vector v is
known at this point: |7| = v, < ¢ and v, = 0, where c is the speed of the light.
The angle between ¥ and Z is a; cos(c) > 0.

The distance along the z-azis between the origin and the point particle will
be L at some later time (tj).

Estimate the total energy emitted (W) in the form of dipole radiation be-
tween t, and ¢5 as a function of ( I—*_‘:, Vo, @, L, m ) . e« and L is chosen that the
charge never leaves the region of interest where the field is constant and homoge-
nous and that the speed of the particle at t; is still non-relativistic (v < c).
Describe and interpret the result.

(Hint: Remember, one can approzimate the (dipole) radiated power with
the Larmor formula (e.g. P = I;T:?g’ where p is the dipole moment) for non-
relativistic situations.)

Summary of solution:

One way to estimate this is:

. — .. .
The equation of motion is mT = eE. Since p = ea in this case, the
. . )2 2 .

radiated power can be approximated as P = 6%%5— according to the Larmor

formula.
The x-projection of the position of the particle at time t¢ is L = % (%"Ii) t} +
’Uotf.

Therefore the total flight time is ty = muocos(@)ty/mvicosi(a) t2eBmE

eE
Consequently the total energy emitted in the form of dipole radiation be-
tween t, and ty can be estimated as:

W o po cBue ( cos?(a) + 2BL cos(a))

— 6mc m muwg
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