Columbia University
Department of Physics
QUALIFYING EXAMINATION
January 14, 2004
9:00 AM -11:00 AM

Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 6 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 3 (QM),
Question 1; Section 3(QM) Question 3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code

You may refer to the single note sheet on 8 2 x 11 paper (double-sided)
you have prepared on Modern Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at
the end of today’s exam. Please include your Exam Letter Code on your
note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Problem 1

Consider a particle of mass m moving in one dimension over the range — oo < x < © and

subject to the attractive two delta-function potential (see sketch),

V(x)=-V,a[5(x-a/2)+5(x+a/2)].

Here a is a length and V} is a positive constant.

a) For a sufficiently large ¥} this potential has
two bound states. Sketch their wave functions.

b) For a less than some critical distance a., the
potential has only one bound state. Find a. in
terms of m and V.

x=-a/2 x=0 x=a/2

V(x)

Problem 2

A one-dimensional harmonic oscillator with mass m and spring constant ky is subject to a
.. . . 1
time-independent squeezing perturbation, ¥, (x) = Eklx2 , .kl /kol <<1.
a) Using perturbation theory, calculate the ground state energy shift to second order in
k 1/k0.

b) Compare to the exact result for the change in ground state energy in the presence of
the perturbation.

¢) Compute to first order the perturbed ground state wave function in terms of the
unperturbed wave functions (¥ (x) = <x[ n> .

exacr

d) What is the exact ground state wave function, v, " (x), in the presence of the
perturbation (do not worry about the normalization).
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Problem 3

The Hamiltonian for the two-dimensional harmonic oscillator is
1 1
H=—/p!+p))+-mo*(x* +y?).
o (p; +p,) 5 (x"+y7)

As for the one-dimensional harmonic oscillator, one can introduce creation and
annihilation operators according to

a_ma)

a-f T

so that H = ha)(aiax + a;ay + 1) with [ax,a J [a a ]— 1. The angular momentum

operatoris L=xp, —yp,.
a) Evaluate L in terms of the creation and annihilation operators.
b) Evaluate [L,ax] and [L,ayJ.

c) Give a physical argument that requires [L, H ] = 0. Use the result from part b to check
that [L,H]=0.

Problem 4

Consider a particle of mass m moving non-relativistically along the circumference of a
horizontal circle of radius R.

a) What are the energy eigenstates and eigenvalues of this system?

b) A uniform magnetic field B is introduced perpendicular to the plane of the circle.
If the particle has charge g, find the new energy eigenvalues and eigenstates.

¢) Next, consider a system of two neutral particles of mass m; and m. that move on
the circumference of the circle. If an infinite short-range repulsive force prevents
them from passing each other, find the resulting energy eigenstates and
eigenvalues.

d) Repeat your solution to part c) for the case that the repulsive force is replaced by
reflectionless scattering satisfying the boundary

condition, 1im ¥/(8,,6,) = e? hm w(6,,0,).

6,8, 6,65
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Problem 5

An electron in a hydrogen atom is in a state described by the wave function
‘P(?)z A[WIOO (7)"'2‘//210 (’7)'*' 2'//211(7)— Yo (F)]

Herey,,, (7) is a normalized wave function of hydrogen atom with the principle quantum

number #, angular quantum number / and magnetic quantum number m, where the
explicit functional forms are:

Wioo (’_;) = 251(;3/2 (4”)_1/2 g7/
Waol7)=(2ay)™"? (47) "2 (r/a,)e™"* cos

Wais (F): ¥(2a0)'3/2(87[)_1/2(r/a0)e"/2“° sinfe*?

2

The Bohr radius is a, = > where m, is the mass of electron. 4 is a normalization

m,e

e

constant.

a) Neglecting the spin orbit interaction (for now), find the expectation values of the
energy, L and L., where L and L, are the orbital angular momentum of the hydrogen
atom and its z-component, respectively.

b) Now the hydrogen atom described above is placed in a weak gravitational force

field, F = —m,g 7 , where g is the gravitational acceleration constant. Compute the

change in the expectation value of the energy to first order in m,g. Assume that the
ion core remains fixed in space.

¢) We now consider a spin-orbit coupling of the electron in this problem. How many
different values of energy level can be measured in the above wave function? (Note
that we do not have ,,,(¥) component in the above wave function.)

Problem 6

Consider a rigid rotor with moment of inertia, , and permanent dipole moment, p, located
in an external, position independent electric field E. Calculate the ground state energy
and wave functions for the following cases:

a) E=0
b) pE << #/

¢) Let the rotor be constrained to the x-y plane. Solve for the ground-state energy
and wave function assuming E = 0.

d) Let the rotor perform small oscillations (¢ << I) about the x-axis and let
E=E .* . Find the ground-state energy and wave function.
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Suggested Solutions

Introduce ¢ to represent rotation of the moving sphere about its
center of mass. Equating the total kinetic energy w ith the poten-
tial energy lost gives:

2

4

(R+ 7)1 —cos(f))mg = m(ro)® + =My

909
= —mr ¢
5}

7

The sphme will fly off when muv2, /(R

Start with the equation ¢f motion obtained by equating torque and
rate of change of anguytar momentumn around the point of contact:
,mz 2(2) = mgr sin 0. Relate ¢ and ¢ by computing the velocity of

thc noving sphere/s center of mass two ways:

(R+1)0 = ro

Combining Ahese equations:

/‘ - 5y

ii 9 paeny —_—
7 7R+ r)
/f ()% ]
/ (0
/ o(t) = 50) sinh (wt)

e . 5q
where w = ,/—-——7(1?*,,).

w(f) = v%c”‘"” E, = m"‘) where k,, = n/R and n is an integer.

The samne form as in a) except k, = n/R + ¢BR/2 where n is an

integer.

: /9 RP? | (Bky)?
By, 0s) = ORGS0, — )], B, = BERE 4 B
where P, = n/R, b = [/(4R) and n, [ are integers.

: > (hD)" k)2
,u(y(el.()z) L(()lvf}'))l‘ /) I(()l 0))1” En, — Ll[ ) UL (l 1 .

m

dn '
where P, = n/R, ky =1/(2R) + ()/(‘?7‘[1) and n, [ are integers.




Kim) Ounesh 5
gégﬁ‘ma heihom I O,

(D fndl she noomalization constant Lovst.

1= <HWY = A %27 +2>4,7 7

o (A= W’EA]

Thewt
{EV = <hlHI®Y = [E""’""‘E:Io*‘lgffE J
E, Ez.
= LE+9E,)) = 13
O( \,;‘:E_' %E;
v ? Eq: I3 6el/
e = Rl Latd> = L ko yhoryh ]

—-3/K

LTy = <q\u_w>—,o [o+ 94" Learay |

= 9h
5

\’M_‘_ .

CbD
AH = tm4z

Then
AE = Meg = | Lh™>

| Up o the fict odley, oF ’meg




«)

Nao +hot [, 21=0 & <““n,eml31‘hw7=a

Thevelove MI] oot - 2eYD Lotribmtrevt  in (RIZI

i< .,L’ +evrmg < 4«?-:0' ’z'q\lbo> &‘Y\O‘ <Ll:so£?}b§;

Thug
2,
n CEUT
2 2 _\_
—_ /f 2 2 Jdgﬁlﬁega“ffb dr ’2/1613 4LTT
(&) e ™ coso - reaso
E
—_ 4 ! ] ‘ 4. &l w
T %375 V3, 07;54?[(0" Sﬂde&ws s o 2m o‘t—(;“éi
\\\'—N‘i}; e
— Qe /2\5 /™ -
= My 5 (3 [dsf“es
7.
= 0.447F /Wl,%_
- QD
Héo = JCCY') L.+ S jCCr)'- mchoJ uqmlc-hm
m .
= 4w 5{ 3= :'*-S){] /




-
o eNLNX ey
Thwm - 3 - OLU(
m=>, £2-=1 j:-_‘i ,,Q-:'j_
\,\MM
3“:-3.3_ , A=0
Note +thot oo olon ' Love. \,(\loo cmPamw—t,

in h
Thave 3Ca-e_ 3 Ol;gevf,wc \Ja\-wb: o;C mea:um\h&{

——————
@ ———

QMTC‘U IO*( o wa\fe-CuV\ 1 e \4\ .




- Hiley  Sedhin 3 Quthor # ¢
g“}y" 6’“) Tle Qx‘\vm‘b/‘}rw\é‘;\ ‘tzm J A

SR » . . 2 =
”_ﬁ_% = ¢ ¥ Lo/f: L‘X‘Z“LLY tly
PARES

SZ/ \/Lm((g (f) LOZP Y‘:w\ ~ L@ +‘) 't!f\L

< = Q@H){—Z D N~ Yenl©4) &4 =
T B =0

s q:cll) (/Q,Vﬂ \//QW\>
- - Pk:b@}& _ - F«-
ol ) e A S
Lo O </LW\W—pCL4ﬁ4£w§>
- Egrd /
The matrivelesl 5 O Ly }«iv’w}/;
g Z ((L T(V/@0> (%

g B

— B — O ,
VT PECE = e L“%r Yo  siree

Y -~ /3 Cunl - Te m nTroy elemed «t;)
L O \V L ‘

N ('QVY\ / YEO /CC/> — (/ﬁan/Yl*c> Slnees
So O Y\{ /Cj =/ > &

/&}[ ( QU> =
\/’—f” ¢ bt o hisky et

C 7 hnects g Coumnde S




& @Jﬁm CPEVE YL Jdi = —pE (Y Ve dR
> 5N ar St
€c~€2m - ?U B {/u = O - 0er)r" ~k?
2T T
R s &
Cora - T <\P_,/L3_Z TP E-L

el W\@y& ﬂtg el 1T | |
(SRR +g(ﬁf~7/v/w))%m

M
AN
R N
VRSN T
v - \/UG =+ PCJ’” \/10

- VE 1;\ |
C} /(’\Ls' ’5 on &FC(//\O&_ roﬁ*\/;&ﬁ/ : |
~EL MY - s e F
3¢ YloT) = 240
% 2,2 _ <

Z’_\

<,
§L




Ql) .[’/%& — (OEC/‘°§/: o W

2 -

~ 42 2N —pE(Im¢R)F=E €7
| 2 2f |
: This 15 qush T Shple barmeonic Osellety,

Wey /Z,V\*&;b\) ‘I_\‘Z/C]Fcl gﬁa‘/‘c Lz we IQthLW\

?PZ%Q'*’Q T/\’\AD\ fﬁ\ N ?/I—_
" <9L/z 2)75 +>Z_71L: —pE = o

K= ¢ = gvig; — pE
— 2




Columbia University
Department of Physics
QUALIFYING EXAMINATION
January 14, 2004
11:10 AM -1:10 PM

Modern Physics
Section 4. Relativity and Applied Quantum
Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 4
(Relativity and Applied QM), Question 2; Section 4(Relativity and Applied
QM) Question 3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code

You may refer to the single note sheet on 8 1, x 117 paper (double-sided)
you have prepared on Modern Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at
the end of today’s exam. Please include your Exam Letter Code on your
note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Problem 4

Two particles of mass m; and m; are observed in a certain frame to have four-vectors p,
and p;, respectively,

a) Denote the magnitude of three-momentum each particle has in their center-of-
mass frame as k. Find an expression entirely in terms of relativistic invariants for
k.

b) The relative velocity between the two particles in the center-of-mass frame can
also be expressed solely in terms of invariant quantities. Do so.

Hint: You may find it useful to note that the four-vector (p; + p2)/M , where
M = (p; + p3)’ hasa very simple form in the center-of-mass.

Problem 5
In neutral B-mesons, weak and mass eigenstates are not the same. These mesons
therefore exhibit particle-antiparticle mixing. Because of this phenomenon, particles

produced as pure B° or B° weak eigenstates will evolve in time as a superposition of the
two states:

|B°(t)>=a(t)|B°>+b(t)[§°>
|§°(z)>=a'(t)|B°>+b'(t)|§°>
where |B°> and ‘§°> are pure B and B° states.

The time evolution of these states is described by 2x2 hermitian mass (M) and decay (I)
matrices.

) (-5 )50)
at\ b(t) 2 N\ bt

CPT invariance requires that M,, =M, =M and I, =T,, =T.

a) Calculate the mass and decay width differences between the two mass eigenstates of
the B®- B system in terms of the elements of M and I~ You may assume that CP-
violation is negligible, i.e. that the phase difference between M;; and I';, is zero.

b) What are the functions a(?), a’(t), b(t), b’(t) in terms of the mass and decay matrix
elements?

Section 4- Modern Physics: Relativity, Applied QM Page 3 of 3
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Quals 2004
Section 4 — Modern Physics: Relativity (Four Vector Rel Vel)

Question #
Bill Zajc A
12/29/03

Two particles of mass m; and m, are observed in a certain frame to have four-vectors p;
and ps, respectively,

a) Denote the magnitude of three-momentum each particle has in their center-of-
mass frame as k. Find an expression entirely in terms of relativistic invariants for
k.

b) The relative velocity between the two particles in the center-of-mass frame can
also be expressed solely in terms of invariant quantities. Do so.

Hint: You may find it useful to note that the four-vector (p; + p2)/M . where
M? = (p, + pz)2 . has a very simple form in the center-of-mass.
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Qual’s — 2004: Quantum Solutions (B-Mixing)
(H. Evans)

Part a)

First find the eigenvalues (A.) and eigenvectors (x:) of the mass/decay matrix:

oot

Eigenvalues:
d-x d,

dy d-2

i i i
}\‘i =d+ dmdzl Z(M_Erji\/(Mlz _Ernz)(le _—2—F21)
I i . I
SURTIN ey
2 o207 207

since M;; and I'» have the same phase, o:
Ay = (M —irj + ([M,,[ -4r, j
+ 5 SR
The time evolution equation for the mass eigenstates is then:
0 I
igxt(t) =N, X, (1) = X, (1) exp(— i?»tz‘)z exp(- iM,t— ?ttJ

where M, = Re(li) and [, = Im(ki).
The mass and width differences are then:

Am=M, -M_=2M,
AC =T, -T_ =2[l",|

Dx =2x = =0 = A -2dr+(d” —d,,d,, ) =0




Part b)

Eigenvectors:
Dx, = A.X,
= dx,, +dpXs, = kX and d,x,, +dx, =k, Xy
d,,
= X, =EX LT
dll

If we defined the weak basis as:

i

Then the mass eigenstates are:
IB¢> _ p‘BO>iq\§°>
with

These mass eigenstates evolve separately as:
|B.(1)) = exp(~ ir.t)B,)

Writing the weak eigenstates in terms of the mass eigenstates:

lB">=§1]—7(jB+>+\B_>) and  |B%)=-(B,)-B.)

2q
The the mass eigenstates time evolution become:

p~BO(f)>+ql§0(’)> = exp(~ ihf)lp\30>+q1§0>]
P B (1)) - a|B()) = (- n g B°) = | B°)

Solving these simultaneous equations gives:

B(1)) =g, (1) 8" e (] B)

- — )
1B°(1))=g.(1)|B")+ g (1) B)
q
where the time evolution coetficients are:

giabg[exp(— )£ explin 1))






