Columbia University
Department of Physics
QUALIFYING EXAMINATION
January 12, 2004
9:00 AM -11:00 AM

Classical Physics
Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 1
(Classical Mechanics), Question 1; Section 1(Classical Mechanics) Question
3, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code

Y ou may refer to the single note sheet on 8 /2 x 11” paper (double-sided)
you have prepared on Classical Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at
the end of today’s exam. Please include your Exam Letter Code on your
note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Problem 1

A simple pendulum consists of a massless rod of length R with a mass m at
the bottom. The rod pivots on a hinge that constrains the motion of the
pendulum to the vertical plane. The hinge is attached to the lower end of

a vertical shaft that is made to rotate with a constant angular frequency

o by a synchronous motor.

2)
b)
c)
d)

e)

Write down the Lagrangian and the equation of motion in a stationary
coordinate system.

What is the solution corresponding to stable small oscillations about

the position of minimum energy and what is the condition for this type of
motion?

What is the frequency of small oscillations?

What is the Hamiltonian, A, in the fixed coordinate system? What is the
Hamiltonian in a rotating system attached to the shaft of the motor?

Are T+V (kinetic + potential energy) and H conserved in each of the coordinate
systems mentioned above?

Problem 2

A uniform sphere of radius » and mass m rolls
without sliding on the outer surface of a
stationary sphere of radius R. The position of the
rolling sphere is described by angle, 6 as shown
in the figure. If the upper sphere starts from rest
at the top of the stationary sphere (6 = 0),

a)

Find the velocity of the center of mass of the
moving sphere as a function of 6.

b) Determine that value of §at which the moving sphere flies off the stationary one.

¢) If the moving sphere begins at ¢ = 0 with 8= 0 but 8(0) # 0 find 8 (¢) in terms of
6(0) for small 7.
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Problem 3

A recent Science Times article featured the concept of a “space elevator”. This is a free
hanging rope in stationary orbit around the earth above the equator. You could send an
elevator up this rope to launch objects into space at less cost than required for shuttle
flights. Imagine such a rope just reached the earth’s surface. Find an expression for the
tension in the rope as a function of height, y, off the earth’s surface. Assume the rope has
length L, and mass m, and that the earth has radius R and mass M and rotates at angular
velocity . What length, L, allows the rope to hang freely (i.e. without being attached to
the earth’s surface) ?

O o
el L P
— .
AN Uniform rope
R

Problem 4

Consider circular orbits in the field of a central force f (7" ) =—kr"

a) What is the relation between orbital velocity v and radius r?
b) For what values of  are these circular orbits stable to small perturbations?
c) Specifically, are the circular orbits stable or unstable for n = -3?
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Problem 5

A thin, uniform density, bar of length L and mass M is support by two springs with
identical spring constants £ and unloaded lengths /. The center of mass of the bar is
constrained to move vertically with displacement y(z), but the bar can rotate in the x-y
plane with angle ¢().

X x=-L/2 x=L/2

a) Determine the Lagrangian of the system for small displacements taking gravity into
account.

b) Solve the Euler-Lagrange equations of motion to determine the frequencies and
eigenvectors for the normal modes of the system.

¢) If at t=0 the end of the bar at x=L/2 is‘depressed by a small amount, d, while the other
end is held in its equilibrium position (i.e. y;(1=0)=I, y2(0)=I-d) and all initial
generalized velocities vanish, find expressions for the time dependence of the
subsequent vertical displacement and angular rotation of the bar, y(?) and ¢().
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‘Delivered-To: lalla@phys.columbia.edu
Date: Mon, 22 Dec 2003 02:01:46 -0500
From: Elena Aprile <age@astro.columbia.edu>

Subject: Aprile_Quals2004_Mechanics Problem Section 1-:Classical Mechanics
To: cole@nevis1.columbia.edu Question #/1
Cc: lalla@phys.columbia.edu L
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0) -

Importance: Normal

Hi Brian, | attach a problem for the quals; sorry for being late. Elena

MECHANICS_PROBLEM

A simple pendulum consists of a massless rod of length R with a mass m at
the bottom. The rod pivots on a hinge that constrains the motion of the
pendulum to the vertical plane. The hinge is attached to the lower end of

a vertical shaft that is made to rotate with a constant angular frequency

w by a synchronous motor.

(1) Write down the Lagrangian and the equation of motion in a stationary
coordinate system.

(2) What is the solution corresponding to stable small oscillations about
the position of minimum energy and what is the condition for this type of
motion? What is the frequency of small oscillations?

(3) What torque does the motor exert when the pendutlum oscillates as
above.

(4) What is the Hamiltonian in the fixed coordinate system? What is the
Hamiltonian in a rotating system attached to the shaft of the motor?

(5) Are T+V and H conserved in each of the coordinate systems mentioned
above?
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Suggested Solutions

1. (a) Introduce ¢ to represent rotation of the moving sphere about its

(b)

center of mass. Equating the total kinetic energy with the poten-
tial energy lost gives:

9 2 ..
(R+71)(1 —cos(0))mg = m(ro)* + Zmr?y’
9]

5

: 212
= -mr o

2
g,

T ~] L

V1

Thus, ven(t) = /2(B + r)(1 — cos(f))g-

2
cm

The sphere will fly off when muZ, /(R 4 1) > mygcos(€) or

=

%(1 —cos(d)) > cos(0)
or
cos(f) = 5/13

Start with the equation of motion obtained by equating torque and
rate of change of angular momentum around the point of contact:
%‘nu'zc} = ngrsing. Relate 6 and ¢ by computing the velocity of
the moving sphere’s center of mass two ways:

(R+ 1) = ro

Combining these equations:

. 5y
= ==
T(R+71)
or .
A(0
oty = () sinh (wt)

/ Ny
where w = VIR

3]
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Mechanics Ttk
Q3. A recent Science Times
article featurced the concept d:’

of a space elevator. This is
a “free hanging” rope in
stationary orbit around the
equator. You could then
send an elevator up this
rope to launch objects into
space at less cost than the
shuttle. Imagine that the
rope just reached the
earth’s surface. What is the
expression for the tension
in the rope? How long does
the rope have to be? ‘
Assume the rope has length

L, mass m. and the earth

has radius R and mass M.
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Problem 2 (Mechanics - Central Force)

(M.Shaevitz)
For the following questions assume that there is a central force with the form (k > 0)

Sy = —kr"
a) For circular orbits, what is the relation between velocity, v, the radius, r, and n.

b) For what values of n are these circular orbits stable to small perturbations?
c) Specifically, are the circular orbits stable or unstable forn = 37

Solution:
a) From the radial equation of motion
. 2
mr= 21— fir)
a circular orbit will have r= 0 giving (where L = angular momentum)

2 2
my n L

mr
L = mry
k A+l
VvV = mr

b) For a circular orbit with radius equal a, letr = a + x, then

. LZ

mx—= —=—0r

* m(a + x)* +fa+x)
Expanding as a power series in £ give

mic L (1232 4 )+ (@ +f(@x+..)

ma’

Keeping only the leading terms and using the conditions for a circular orbit then leads to
mx +(‘b—3f(a) ﬁf'(a))x =0
For stable orbits, coeficient of x must be greater than zero
~(f@y+ Lr@) >0
Given the power law force f{r) = —kr", the stability condition then becomes
—ka" _ %kna"—1 <0
or
n>-3
c) For f(r) = —kr-3, the above equations becomes
fay+ 5f (@ =0
mx=0

This then gives a non-stable orbit where any perturbation is not corrected by a restorative
force.
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Columbia University
Department of Physics
QUALIFYING EXAMINATION
January 12, 2004
11:10 AM -1:10 PM

Classical Physics
Section 2. Electricity, Magnetism &
Electrodynamics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 2
(Electricity etc.), Question 2; Section 2(Electricity etc.) Question 4, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code

You may refer to the single note sheet on 8 % x 11” paper (double-sided)
you have prepared on Classical Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at
the end of today’s exam. Please include your Exam Letter Code on your
note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!




Problem 1

A point-like electric dipole p is embedded at the center of a sphere of radius R. The
sphere is made of linear dielectric material with dielectric constant &, and is surrounded
by vacuum. Determine the electric potential inside and outside the sphere making sure
you get the correct answer in the limite, — 1. Hint: the potential at small distances must
approach the potential of a dipole in an infinitely large dielectric medium (SI units),

- 1 p-r  pcosé

3T 2"
4re,e, 1 4reye, v

Problem 2

A coaxial cable consists of two cylindrical conductors. The inner conductor is a solid
cylinder of radius a, and the outer conductor is a thin cylindrical shell of radius 5. A
current / flows in the inner conductor and current —/ flows in the outer conductor.
Assume that the current in the inner conductor is uniformly distributed across the cross-
section of the conductor.

a) Show that the inductance L per unit length / is given by % = —2& In é + fi (you may
T a 4w

alternatively give the result in CGS units).

b) What gives rise to the second term in the result in part a? To answer this, consider
how the result changes if you assume the inner conductor is a thin cylindrical shell of
radius a.
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Problem 3

Two halves of a spherical metallic shell of radius R and infinite conductivity are

separated by a small insulating gap.

a) Ifthe two shells are maintained at constant potentials +# and —V, respectively find
the electrostatic potential outside the hemispheres up through and including terms of

order (1/r)’.

b) Find the static dipole moment of the system with the conductors held at the potentials

given in part a).

c) Now the potentials of the shells are made to vary slowly with time according to
+V coswt . The electric dipole of the system now varies sinusoidally with time and
the system gives off electric dipole radiation. Find the time-averaged power radiated
by the two shells as a function of the angle 0 (defined with respect to the electric

dipole moment) and frequency ®.

Problem 4

A uniformly charged wire with constant
charge per unit length, -A (charge density
p(r) =—-A8(x—a)d(y —a) ), runs parallel to
and is a distance, a, from the surfaces of two
planar, perfect conductors oriented
perpendicular to each other. The planes
intersect at x=y=0. Find the surface charge
density, ofx) and o(y) on the surfaces of the
horizontal and vertical conducting planes,
respectively.

Section 2: Classical Physics: E&M
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Problem 5

The Proca equations describe electromagnetism with photons that have a non-zero rest

mass. The electric and magnetic fields, Eand B , are defined in terms of a scalar potential,

o 14
@, and a vector potential, 4, in the usual way, B=Vx dand £ =-VO® -————a? . The four
c

Proca equations involve E , B , @, and Aand are a generalization of the four Maxwell’s
equations:

(DV-B=0 (I‘)%xE:-la—B
c ot oE
() V-E+ p’® =4np (11'Wx1§+y22=4—”J+1—

c c ot

The first two equations are equivalent to the definitions of E and B in terms of @, and 4.
The second two equations involve a new parameter, 4, which has dimensions of

reciprocal length and is related to the photon mass via, z = mc/h . The sources pand J
are the usual charge and current density that satisfy the charge/current conservation law

v.7+2P 0.
ot

a) Show that the Proca equations together with charge/current conservation require that

Aand © satisfy the Lorentz condition, V- 4 + l%%? =0.
c

b) Using the Proca equations together with the Lorentz condition from part a), find the
generalized wave equations that @ and the Cartesian components of A satisfy in
terms of the sources pand J .

c) Consider the plane wave solutions, Alz,) =Re 4o ei(kZ — o)
D(z,1) D,

in source-free space ( o = 0andJ =0). wis a given positive constant, while ;40 and

@, are unspecified constants. Find the constant & in terms of @, 1, and ¢. Show that
there is a cut-off frequency, @, such that for @ >, the wave propagates without
attenuation while for @ <@, the wave does not propagate but is just attenuated in the
(positive or negative) z direction. Find the value for @.. For @ >, find the phase
velocity of the given plane wave in terms of @, 4, and c.

d) For o> ., consider a longitudinal plane wave with the vector potential, A4(z,?)in the
z-direction: ;10 = A,z , where 4,is a given positive constant. Find the plane wave’s

scalar potential ®(z,¢), magnetic field E’(z,t) , and electric field E(z,¢)in terms of
Ap, @, 1, and c.
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Delivered-To: lalla@phys.columbia.edu

X-Authentication-Warning: pegasus.phys.columbia.edu: westerhoff owned process doing -bs
Date: Tue, 13 Jan 2004 11:30:22 -0500 (EST)

From: Stefan Westerhoff <westerhoff@nevis.columbia.edu>

X-X-Sender: westerhoff@pegasus.phys.columbia.edu

To: Brian Cole <cole@nevis.columbia.edu>

Cc: "Lalla R. Grimes" <lalla@phys.columbia.edu>

Subject: qual grading

Hi Brian,

there is a tricky problem with question 2 on the

E&M part of the quals.

The self-inductance of the configuration of question 2

as given in the problem has a typo - the

contribution of the solid cylinder is mu_0/8pi,

not mu_0/4pi (the problem | submitted has the correct
inductance, but | was at a collaboration meeting in

Utah when Lalla's request for proof-reading reached me,
so | had no chance to catch this).

it would not be a big deal for most problems, but

for this one, it unfortunately is.

If you calculate the self-inductance L using the energy
of the magnetic field and then using

W=1/2LI*"2

you get the correct answer (mu_0/8pi). However, if
you calculate the magnetic flux Phi and then use
Phi=LI

to get the self-inductance L, you get an incorrect
answer (the formula does not apply since the current

is not confined to a single path, at least notin a

trivial way -- one would have to split the finite wire

into lots of small wires etc etc ...).

This incorrect answer is unfortunately (how much more
Murphy can there be ?) the answer given in the problem...
Since lots of students used the wrong way to get to

the answer, they did not wonder why they were off

by a factor of 2 (as they should have -- that was my
reason to actually give the solution...).

Bottom line, this is somewhat tricky to grade.

| guess | cannot really subtract any points for the
wrong solution, can't | 7 Maybe just a remark that
this is not the way to calculate it ?

Stefan
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