
Rotational Kinematics

In many situations, motion occurs in a circle. How many coordinates do we need to fully describe such 
motion? Knowing that a circle is a two-dimensional object, one might say that we need two 
coordinates, say, x and y. But the geometry of a circle already binds these two coordinates into a 
relation (x – x0)2 + (y – y0)2 = R2 (R being the radius of the circle and (x0, y0) the coordinates of its 
center) for any point on it, so one of them can always be expressed through the other. Thus, we need 
just one coordinate to define the point's position on a circle.

It can be, for example, the length of the circular path from a certain starting point, but a more 
conventional measure would be the angle with the radius directed at our point and the radius directed at 
some chosen starting point in the counterclockwise direction, as in Fig 1.

Our point, shown in red in Fig. 1, has the angular position φ. From here we can draw an analogy with 
the linear position we had in the beginning of the course: there we had an infinite line and the point's 
position was determined by the place of the origin and the scale factor (the length which is defined to 
be one unit), and here it is determined solely by the angle of the point's radius with the "zero radius" or 
the "origin" on the circle.

But wait. Which angle should we consider when the particle is slightly below the zero point – is it a 
small negative angle or the big positive one (almost 360˚)? Likewise, the point diametrically opposite 
to the starting point equally has a right to take the position of 180˚ and -180˚. We have to work out 
some precision in our definitions. Further, if the point moves from its initial position φ one full circle 
(and obviously comes to the same place it was before), does it take the same position φ or  φ+360˚? If it 
is the same position, how then would we know if it moved one full circle, 26 full circles, or didn't move 
at all?

Of course, such obstacles arise from the fact that the circle has finite length. Our x-axis in linear 
kinematics was infinite; if a particle moved from one place at a constant speed, it would move forever 
and would never take the same linear position again. Trying to map an infinite axis onto a finite circle, 
we naturally encounter difficulties: if you "roll" your axis onto a circle, each point on the circle will 
correspond to an infinite number of points on the axis.

So how do we cram infinite into finite? First, let's begin by setting our angular units.

You might be used to expressing angles in degrees. Remember that a degree is an angle which 
encompasses 1/360 of a full circle. 1/360 is obviously an arbitrary number coming from a historical 



convention. You could as well split the full circle into 100, 200, 12 or 60 (as in the clock), or 400 parts 
(1/400 of a full circle is actually a real unit called grad or gradian), and one would not be much 
different from all others, apart from the scaling factor. There is a better, more natural unit for measuring 
angles, the radian. One radian is the angle which encompasses the arc length equal to the radius. As 
you know from middle school, the circumference of a circle equals 2π times its radius, so the full circle 
encompasses 2π radians. As the radian is the ratio of two lengths, it is dimensionless, and its 
abbreviation rad is mostly omitted ("φ = π/2" rather than "φ = π/2 rad"), whereas you must retain the 
name of other units ("φ = 90˚", not "φ = 90", if you mean the quarter of a circle).

Now let's try to figure out the correspondence of angular position to linear. When the point moves an 
angle φ from the starting point, it covers the arc length φR, which is just the linear displacement from 
the original position. Thus, x(t) = R φ(t), where x(t) and φ(t) are the linear and angular position 
functions accordingly.

The ambiguity with the same point having different positions may be resolved in the following way. 
The angular position function, φ(t), is proportional to the distance covered. For example, the point 
started at zero and moved three full circles counterclockwise. It covered the distance 6πR; thus, its final 
angular position is 6π, although this point coincides with the points with angular positions 0, 2π, 4π, …

Having defined the angular position, it is easy to define the rates of change of first and second order, 
namely first and second time derivatives of it. Taking the definition
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so all angular kinematic quantities are proportional to the corresponding linear ones via the inverse 
radius of the circle.

Likewise, in certain situations when ε = const, integrating the definitions will give you

{
=0 t

=0 t
 t2

2

,

which would be appropriate to call the basic rotational kinematic equations.

Problem. A merry-go-round is stationary. A dog is running on the ground just outside its 
circumference, moving with a constant angular speed of ω = 0.750 rad/s. The dog does not change his 



pace when he sees what he has been looking for: a bone resting on the merry-go-round one third of a 
revolution in front of him. At the instant the dog sees the bone (t = 0), the merry-go-round begins to 
move in the direction the dog is running, with a constant angular acceleration of ε = 0.0165 rad/s2. 1). 
At what time will the dog reach the bone? 2). The confused dog keeps running and passes the bone. 
How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for 
the second time? The third time? The fourth time?

Solution. The condition "dog meets bone" on a straight line would be very unambiguous: 
x dog(t) = x bone(t), i.e. if two points meet, they must have the same position. On the circle, as we pointed 
out above, this does not have to be the case. The angular positions of the two may be equal, but they 
may differ by any number of the full circles. For example, let's imagine the initial positions of both 
were 0; the bone kept lying there and the dog made 4 full circles. They are at the same point now (they 
meet each other again, so to say), but the bone's position is still 0 and the dog's is 8π. Thus, the 
difference of the dog's and the bone's position must be 2πn, where n is any integer (including zero). 
Let's write out their position functions:
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(the dog's initial position is defined as zero and it does not accelerate, and the bone's initial position will 
be one third of a full circle or 2π/3 and its acceleration is ε), and then set their difference to 2πn:
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(setting the difference dog−bone  instead would be equivalent to picking -n instead of n; as n is any 
integer, it does not matter).

The above equation, solved for time t, will give us the moments when the dog and the bone meet. As it 
is quadratic, we have two solutions:
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Depending on the numeric values of ω and ε, these values may be positive, negative, or complex. In 
order to find those that correspond to this problem, we need to use the numbers given in the problem 
statement and run through various values of n. This is best done using spreadsheet software. This is 
what we have:

ω ε n t+ t-
0.7500 0.0165 -3 Err:502 Err:502

-2 62.4560 28.4531
-1 77.8683 13.0408
0 88.0251 2.8840
1 96.1877 -5.2786
2 103.2079 -12.2988
3 109.4627 -18.5536
4 115.1586 -24.2495



For n ≤ –3 we obviously have no solution: both square roots have negative values under them. For n=1 
and above the second (minus-sign) solution of the quadratic equation gives negative values. Picking all 
positive values starting from the smallest, we have the following meeting times:

t1 = 2.9 s
t2 = 13.0 s
t3 = 28.5 s
t4 = 62.5 s
t5 = 77.9 s
…..........

A curious student would wonder what happens physically when the valid solutions switch from those 
of t- to those of t+, as from 28.5 s to 62.5 s. I leave this point as an exercise.


