
Momentum

Besides energy, there is one more physical quantity in mechanics that is sometimes conserved (and 
there is even more, but let's wait). To begin, let us imagine a system of many particles or objects in the 
widest sense of the word. For example, a box in the car can be a system of two objects "box+car". 
Fifteen billiard balls on the table can also be a system of 15 objects. We can even consider 7 of them 
and consider them the system "7 billiard balls", and anything besides them will be "other stuff from the 
outside world". In general, let's have n particles in our system. They can interact with each other and 
also with the stuff from the outside, for example, with Earth (it attracts each one of them with the force 
of gravity) or with air (wind can exert a force on all of them or some of them). We will from now on 
pay particular attention to distinguishing between the forces coming from the outside and those from 
the inside (that is, from other particles in the system).

Now, let's concentrate our attention on some random particle number i (where 1 ≤ i ≤ n). We can 
obviously write second Newton's law for it:

Fi net=mi ai

The net force on it consists of the forces acting from the outside world, which we will denote Fi , and 
the forces acting from other particles in the system. Each particle number j, in general, acts on our 
particle number i with the force which we shall denote f i j (the first index is the number of particle 
affected, the second is the number of particle acting). As there are n particles in the system, the total 
force on our ith particle will be the sum of all those n – 1 forces:

∑
j=1

n

f i j

where, of course, j ≠ i (the particle cannot exert a force on itself). Therefore, the net force on the ith 

particle will be 

Fi net= F i∑
j=1

n

f i j .

Notice that the particles don't have to actually interact with one another: we are considering the most 
general case. Some or all particles may not be involved in interaction, and for those the vectors f i j

will just be zero.

Plugging it back in the second Newton's law, we have:

mi ai= F i∑
j=1

n

f i j

for our selected particle number i.

Let's now sum up the Newton's equations for all particles in the system:



∑
i=1

n

mi ai=∑
i=1

n

F i∑
i=1

n

∑
j=1

n

f i j , where j ≠ i .

Let's look closely at the double sum in this equation. It sums up all f i j in the system – the forces of 
interaction of each pair of particles. But now it's a good idea to remember third Newton's law, which 
states that if two objects interact, the forces they exert on each other are equal in magnitude and 
opposite in direction. In our notation, for any two particles numbered i and j, it will be f i j=−

f j i . 

That means that for any f i j in the double sum, there will be f j i as well, and by third Newton's law 

they will cancel each other (for example, in the sum f 13,28 will cancel f 28,13 , f 4,9 will cancel
f 9,4 , etc.). It's now easy to see that all f i j will cancel, and thus, the double sum equals zero!

We are now left with this:

∑
i=1

n

mi ai=∑
i=1

n

F i .

Let's now express the acceleration as the derivative of velocity and integrate it:

∑
i=1

n

mi

d v i

dt
=∑

i=1

n

F i , 
d
dt
∑
i=1

n

miv i=∑
i=1

n

F i , ∑
i=1

n

mi v i=∫∑
i=1

n

F i dt=∫ Fext dt ,

where F ext=∑
i=1

n

F i is the total external force (sum of all the forces from the outside world) acting on 

our system of particles. Let's again look at the conclusion we have arrived at:

∑
i=1

n

mi v i=∫ F ext dt .

Now we have to define the new physical quantities we see here. The product of mass and velocity is 
called momentum. The momentum of the ith particle is pi=mi v i . It is a vector quantity. Another 
quantity is the integral of the force by time on the right-hand side. It is called the impulse of the force. 
Thus, the change of the total momentum of the system of particles equals the impulse of the external 
force.

Particularly, the most useful result is obtained in the case when the external force is absent, i.e., equals 
zero. Since the integral of zero is a constant, the sum of all momenta of the particles will stay constant. 
This is the law of conservation of momentum:

∑
i=1

n

pi=const if F ext=0 .

Since momentum if a vector quantity, its conservation will give you up to three scalar equations of 
conservation of its components on all three axes. In most of our problems there will be one or two. 
Also, sometimes the external force does exist, but its component may be zero in a certain direction; 
then the momentum's component in this direction will be conserved (see the problem below).



Problem. Two particles of masses m1 and m2 are moving without friction along a straight horizontal 
line toward each other with speeds v1 and v2 and collide head-on. Find their speeds after the collision in 
the two following scenarios: 1) they stick together (inelastic collision); 2) no loss of energy (elastic 
collision).

Solution. Consider the system of these two particles. Is there an outside force acting on the system? On 
Earth, this will be gravity, but in the horizontal direction its component is zero, so the horizontal 
momentum of our system is conserved. 

Scenario 1.

Before the collision, the momentum of our system is

P1=m1 v1−m2 v2

(I chose the positive direction parallel to v1). After the collision, they stick together and move as one 
object of mass m1 + m2 and the speed v':

P2=m1m2v ' .

(I assumed the positive direction of v' the same as v1). The conservation of momentum gives us P1 = P2, 
and this answers this question:

m1 v1−m2 v2=m1m2v ' , v '=
m1 v1−m2 v2

m1m2
.

Scenario 2. Here, the particles move separately, and energy is conserved, as stated in the problem. 
Thus, we have two conservation equations – for momentum and energy:

{
m1 v1−m2 v2=−m1 v1 'm2 v2 '

m1 v1
2

2


m2 v2
2

2
=

m1 v1 '2

2


m2 v2 ' 2

2

.

Here I assumed that each particle changes the direction of speed (if not, the speed after the collision, 
which is denoted with a prime, will be negative). Also, there is no change in potential energy, only 
kinetic energy participates. This is a system of two equations with two unknowns (primed speeds), but 
one of them is quadratic with respect to them. The straightforward substitution will be cumbersome. 
However, there is a known trick which allows for easier solving of this system of equations typical of 
collision problems. Gather all terms pertaining to particle 1 on the left and particle 2 on the right (and 
cancel the one-half in the energy equation on the way):

{ m1 v1m1 v1 '=m2v2m2 v2 '

m1 v1
2−m1 v1 '2=m2 v2 '2−m2v2

2 , so { m1v1v1 ' =m2v2v2 ' 

m1v1
2−v1 ' 2=m2v2 '2−v2

2
,

 and then divide the second by the first:



v1
2
−v1 ' 2

v1v1 '
=

v2 '2−v2
2

v2 'v2

, which is just v1−v1 '=v2 '−v2 . Now we have a system of two linear (no 

more quadratic) equations which is trivial:

{m1v1−m2 v2=−m1 v1 'm2 v2 '
v1−v1 '=v2 '−v2

.

The solution is

{v1 '=
2 m2 v2m2−m1v1

m1m2

v2 '=
2 m1 v1−m2−m1v2

m1m2

.

For some Physics 1600 students especially: do not try to copy or memorize these answers! The plus 
and minus signs at many places here strongly depend on the initial assumptions. For example, it would 
be less confusing to choose one positive direction for the whole setup, and just add the momenta 
without worrying about plus or minus signs, but in this case one of the initial speeds would have to be 
negative since they move toward each other. In this case, the answers would have different plus and 
minus signs at some places. You must be able to do the solution for this kind of problems yourself.


