PROBLEM SET

of the Russian National Undergraduate Mathematics Olympiad 2006

- 1. Invert an $n \times n$ matrix whose main diagonal elements are x and all other are 1.
- 2. Find all solutions of the equation $\vec{a} \times (\vec{a} \times (...(\vec{a} \times \vec{x})...)) = \vec{x}$. The non-zero vector \vec{a} in the left-hand part occurs n times.
- 3. Write the equation of a circular cone, for which the lines $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ and $\frac{x}{3} = \frac{y-1}{1} = \frac{z-2}{2}$ are its generatrices and the axis of symmetry of the cone lies in the plane of

these lines.

- 4. The points *A*, *B*, *C* of a triangle are at the distances 7, 15, 15 from the origin. What is the maximum value of the area of the triangle *ABC*?
- 5. Find $\lim_{x \to a} \frac{x^x x^a}{x^x a^x}$
- 6. Check that $\int \frac{x^3 y^3}{x + y^2} dx = \frac{1}{3} (x^3 + y^3) + C$. Here y is the function given implicitly by the equation $x^3 + 3xy + y^3 = 1$.
- 7. What can the function $q(x) \neq 0$ be if the equation $y'' = (\lambda^2 + q(x))y$ has the solution $y = e^{\lambda x} (1 + \frac{A(x)}{\lambda})$ for any $\lambda \neq 0$?
- 8. Find $\int_{0}^{1} F(x) dx$, where $F(x) = \int_{x}^{1} \frac{1}{t^{2} + 1} \cdot \frac{1}{(t x)^{2} + 1} dt$, $(0 \le x \le 1)$.
- 9. The function f(x) is defined by the series $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$. Show that $f(x) + f(1-x) = f(1) \ln x \ln(1-x)$.
- 10. The elements of a 2×2 matrix are randomly selected from the interval [0,1]. Find the dispersion of the determinant of this matrix.